Catalytic Asymmetric Synthesis of Branched Chiral Allylic Phenyl Ethers
FULL PAPERS
(C), 169.0 (C), 135.8 (C, Ph), 129.1 (CH, Ph), 128.2 (CH,
Ph), 126.3 (CH, Ph), 98.7 (cyclopentadienyl C), 95.3 (CCl3),
87.6 (cyclopentadienyl CH), 86.7 (cyclopentadienyl C), 84.2
(cyclopentadienyl CH), 79.3 (cyclopentadienyl CH), 75.3
(cyclobutadienyl C), 71.4 (oxazolinyl CH2O), 65.2 [oxazo-
F. D. Toste, J. Am. Chem. Soc. 1999, 121, 4545–4554;
e) B. M. Trost, F. D. Toste, J. Am. Chem. Soc. 1998, 120,
9074–9075.
[4] a) M. Austeri, D. Linder, J. Lacour, Chem. Eur. J. 2008,
14, 5737–5741; b) K. Onitsuka, H. Okuda, H. Sasai,
Angew. Chem. 2008, 120, 1476–1479; Angew. Chem.
Int. Ed. 2008, 47, 1454–1457; c) M. D. Mbaye, J.-L.
Renaud, B. Demerseman, C. Bruneau, Chem.
Commun. 2004, 1870–1871.
linyl CHCHACHTUNGTRENNUNG(CH3)2], 29.1 [CHCAHTUNGTRENN(GUN CH3)2], 18.7 (CH3), 13.3
(CH3); IR (thin film): n=3371, 3058, 2960, 1652, 1609,
1499 cmÀ1; anal. calcd. for C82H68Cl6Co2N4O4Pd2: C 57.36, H
3.99, N 3.26; found: C 57.13, H 3.82, N 3.18.
[5] a) M. Kimura, Y. Uozumi, J. Org. Chem. 2007, 72, 707–
714; b) S. Shekhar, B. Trantow, A. Leitner, J. F. Hart-
wig, J. Am. Chem. Soc. 2006, 128, 11770–11771; c) A.
Leitner, C. Shu, J. F. Hartwig, Org. Lett. 2005, 7, 1093–
1096; d) C. A. Kiener, C. Shu, C. Incarvito, J. F. Hart-
wig, J. Am. Chem. Soc. 2003, 125, 14272–14273; e) F.
Lopez, T. Ohmura, J. F. Hartwig, J. Am. Chem. Soc.
2003, 125, 3426–3427.
General Procedure for Preparation of Chiral Allylic
Ethers
Di-m-amidate dipalladium complex 3 or its enantiomer (ent-
3) (2 mg, 0.001 mmol) was added in one portion to a solu-
tion of the allylic trichloroacetimidate (0.13 mmol), phenol
1
(0.63 mmol), and CH2Cl2 (0.13 mL) in a sealable = -dram
2
glass vial. The reaction vial was sealed under an Ar atmos-
phere and then heated in a block heater at 388C. After the
reported reaction time, the solution was concentrated under
vacuum and the residue was purified by flash chromatogra-
phy on silica gel to afford the 3-aryloxy-1-alkene product as
a colorless oil. Reactions carried out in CHCl3 were con-
ducted identically at twice the scale.
Other experimental details, characterization data for new
products, and copies of chromatographic traces used to de-
termine enantiomeric purity can be found in the Supporting
Information.
[6] S. F. Kirsch, L. E. Overman, N. S. White, Org. Lett.
2007, 9, 911–913.
[7] For the related reaction to form 3-acyloxy-1-alkenes in
high enantiomeric purity, see: S. F. Kirsch, L. E. Over-
man, J. Am. Chem. Soc. 2005, 127, 2866–2867.
[8] a) M. P. Watson, L. E. Overman, R. G. Bergman, J.
Am. Chem. Soc. 2007, 129, 5031–5044; b) S. F. Kirsch,
L. E. Overman, M. P. Watson, J. Org. Chem. 2004, 69,
8101–8104; c) L. E. Overman, C. E. Owen, M. M.
Pavan, C. J. Richards, Org. Lett. 2003, 5, 1809–1812;
d) C. E. Anderson, L. E. Overman, J. Am. Chem. Soc.
2003, 125, 12412–12413.
[9] For selected examples of the catalysis of allylic imidate
rearrangements with other chiral palladium(II) com-
plexes, see: a) D. F. Fischer, Z.-Q. Xin, R. Peters,
Angew. Chem. 2007, 119, 7848–7851; Angew. Chem.
Int. Ed. 2007, 46, 7704–7707; b) J. Dugal-Tessier, G. R.
Dake, D. P. Gates, Organometallics 2007, 26, 6481–
6486; c) H. Nomura, C. J. Richards, Chem. Eur. J. 2007,
13, 10216–10224; d) J. Kang, T. H. Kim, K. H. Yew,
W. K. Lee, Tetrahedron: Asymmetry 2003, 14, 415–418;
e) Y. Donde, L. E. Overman, J. Am. Chem. Soc. 1999,
121, 2933–2934; f) Y. Jiang, J. M. Longmire, X. Zhang,
Tetrahedron Lett. 1999, 40, 1449–1450; g) Y. Uozumi,
K. Kato, T. Hayashi, Tetrahedron: Asymmetry 1998, 9,
1065–1072; h) L. E. Overman, G. G. Zipp, J. Org.
Chem. 1997, 62, 2288–2291; i) M. Calter, T. K. Hollis,
L. E. Overman, J. Ziller, G. G. Zipp, J. Org. Chem.
1997, 62, 1449–1456.
[10] a) C. E. Anderson, S. F. Kirsch, L. E. Overman, C. J.
Richards, M. P. Watson, Org. Synth. 2007, 84, 148–155;
b) C. E. Anderson, L. E. Overman, C. J. Richards, M. P.
Watson, N. White, Org. Synth. 2007, 84, 139–147;
c) A. M. Stevens, C. J. Richards, Organometallics 1999,
18, 1346–1348.
[11] CCDC 748079 (a) and CCDC 748078 (b) contain the
supplementary crystallographic data for this paper.
These data can be obtained free of charge from The
Acknowledgements
We thank the NSF (CHE-0200786) for financial support. The
Royal Commission for the Exhibition of 1851 is acknowl-
edged for postdoctoral fellowship support of H.F.S. The NIH
Predoctoral Fellowship Program (1F31M089137), the U.S.
Department of Education Graduate Assistance in Areas of
National
Need
(GAANN)
Fellowship
Program
(P200A060042), and the UC Irvine Faculty Mentor Program
are acknowledged for financial support of A.C.O. NMR and
mass spectra were obtained at UC Irvine using instrumenta-
tion acquired with the assistance of NSF and NIH Shared In-
strumentation programs.
References
[1] For reviews, see: a) K. Onitsuka, J. Synth. Org. Chem.
Jpn. 2009, 67, 584–594; b) B. M. Trost, M. L. Crawley,
Chem. Rev. 2003, 103, 2921–2944.
[2] For examples of asymmetric allylation of phenols with
allylic alcohol derivatives not included in ref.[1], see:
a) Y. Uozumi, M. Kimura, Tetrahedron: Asymmetry
2006, 17, 161–166; b) B. M. Trost, F. D. Toste, J. Am.
Chem. Soc. 1998, 120, 815–816; c) A. Iourtchenko, D.
Sinou, J. Mol. Catal. A: Chem. 1997, 122, 91–93.
[3] a) A. M. Sawayama, H. Tanaka, T. J. Wandless, J. Org.
Chem. 2004, 69, 8810–8820; b) B. M. Trost, J. L. Gunz-
ner, O. Dirat, Y. H. Rhee, J. Am. Chem. Soc. 2002, 124,
10396–10415; c) B. M. Trost, H.-C. Tsui, F. D. Toste, J.
Am. Chem. Soc. 2000, 122, 3534–3535; d) B. M. Trost,
Cambridge
Crystallographic Data Centre via
[12] Only three di-m-amidate dipalladium complexes are
found in the Cambridge Structural Database.[13] Of
these, only one (BAQSAN) has an unsymmetrical ar-
rangement of the bridging amidate ligands.[13b].
Adv. Synth. Catal. 2009, 351, 3186 – 3192
ꢀ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3191