formation. Weand othershavedevelopedvariousmethods
to generate C-C bonds directly from two different simple
C-H bonds in the presence of an oxidizing reagent
through a cross-dehydrogenative coupling (CDC) cat-
alyzed by copper, palladium, or other transition metals
(Scheme 1, eq 1).7 The C-H bond adjacent to a heteroa-
tom or an unsaturated C-C bond showed unique reactiv-
ity toward transition metals withhigh selectivity.8 In recent
years, the oxidative coupling of two different aryl C-H
bonds for the synthesis of an arene-arene linkage has
witnessed remarkable progress.7b In a challenging fashion,
we recently reported the direct cross-coupling of an un-
activated arene C-H bond with a cyclic alkane to produce
a new Csp3-Csp2 bond.9
Aryl ketones are key functionalities in the pharmaceu-
tical, fragrance, dye, and agrochemical industries.10 The
classical routes to synthesize aryl ketones mainly rely on
the Friedel-Crafts acylation of aromatic compounds in
the presence of corrosive AlCl3 and oxidation of the
corresponding secondary alcohols by chromium reage-
nts.11 From a synthetic point of view, the direct introduc-
tion of carbonyl functional groups onto the aromatic
motifs via C-H bond cleavage will both be a more
Scheme 1. Transition-Metal-Catalyzed CDC Reactions and
Direct Acylations from Aldehydes and Alcohols
environmentally friendly alternative in aryl ketone synth-
esis and potentially provide a regioselectivity complemen-
tary to classical Friedel-Crafts acylation. However, the
CDC reaction of aryl C-H bonds with acyl C-H bonds
remains a challenge. Recently, we12 and others13 have
developed a transition-metal-catalyzed oxidative sp2 C-H
bond acylation with aldehydes. Various ketones can be
synthesized efficiently and selectively using aromatic or
aliphatic aldehydes as the carbonyl source. Encouraged by
these discoveries, it further occurred to us that alcohols
could serve as the acylation reagents since alcohols can be
readily oxidized into aldehydes.14 Alcohols are naturally
abundant, stable, commercially available, and easy to
handle and thus can be potentially used as ideal acylation
reagents. Herein, we report a palladium-catalyzed regio-
selective acylation of aromatic C-H bonds using alcohols in
the presence of peroxide as an oxidant, affording the ketones
in good yields.
Our initial investigations were focused on the acylation
of 2-phenylpyridine (1a) with benzyl alcohol (2a), and the
results are summarized in Table 1. When 2-phenylpyridine
reacted with 3 equiv of benzyl alcohol in the absence of any
catalyst using 2 equiv of tert-butyl hydroperoxide (TBHP)
as the oxidant, no desired product was detected by GC-MS
and 1H NMR methods (Table 1, entry 1). A trace amount
of the desired product was observed when 5 mol % of PdO
was employed (entry 2). Subsequently, various palladium-
(II) salts were tested for this direct acylation in the presence
of TBHP under an atmosphere of air (entries 3-9).
Moderate yieldswereobservedwhenPd2(dba)3, Pd(acac)2,
and Pd(COD)Cl2 were used as the catalysts. The yields
could be further improved by using Pd(OAc)2 and Pd-
(CH3CN)2Cl2. The best result was obtained using PdCl2 as
the catalyst, and the desired product was obtained in 86%
yield as a single regioisomer (entry 9). Other oxidants were
also tested for this transformation: both TBP (tert-butyl
(6) (a) Giri, R.; Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44,
2112. (b) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc.
2006, 128, 7134. (c) Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang,
S.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 7416. (d) Chen, X.; Hao, X.;
Goodhue, C.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 6790. (e) Li, J. J.;
Giri, R.; Yu, J. Q. Tetrahedron 2008, 64, 6979. (f) Li, J.; Mei, T.; Yu, J. Q.
ꢀ
Angew. Chem., Int. Ed. 2008, 47, 6452. (g) Zhao, X. D.; Dimitrijevic, E.;
Dong, V. M. J. Am. Chem. Soc. 2009, 131, 3466. (h) Wang, X.; Mei, T.;
Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520. (i) Dick, A. R.; Hull, K. L.;
Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (j) Desai, L.; Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542. (k) Desai, L.;
Malik, H.; Sanford, M. S. Org. Lett. 2006, 8, 1141. (l) Desai, L.; Stowers,
K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285. (m) Zhang,
Y. H.; Shi, B. F.; Yu, J. Q. Angew. Chem., Int. Ed. 2009, 48, 6097. (n)
Powers, D.; Geibel, M.; Klein, J.; Ritter, T. J. Am. Chem. Soc. 2009, 131,
17050. (o) Zhang, Y.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 14654. (p)
Wang, X.; Lu, Y.; Dai, H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 12203.
(q) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.
(r) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org.
Lett. 2007, 9, 2931. (s) Wasa, M.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130,
14058. (t) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org.
Lett. 2009, 11, 1607. (u) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11,
5178. (v) Mei, T.; Wang, X.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131,
10806. (w) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D.; Li, C.-J. Adv. Synth.
Catal. 2010, 352, 632.
(7) For reviews, see: (a) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (b)
Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540. (c) Scheuermann, C. J.
Chem.;Asian J. 2010, 5, 436.
(8) For a review, see: Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew.
Chem., Int. Ed. 2009, 48, 9792. For selected examples, see: (a) Hull, K. L.;
Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047. (b)
Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (c) Whitfiekd, S. R.;
Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 15142. (d) Stuart, D.;
Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (e) Chen,
X.; Dobereiner, G.; Hao, X. S.; Giri, R.; Maugel, N.; Yu, J. Q.
Tetrahedron 2009, 65, 3085. (f) Guo, X.; Deng, G.; Li, C.-J. Adv. Synth.
Catal. 2009, 351, 2071. (g) Zhao, X.; Yeung, C.; Dong, V. M. J. Am.
Chem. Soc. 2010, 132, 5837. (h) Wei, Y.; Su, W. P. J. Am. Chem. Soc.
2010, 132, 16377. (i) Potavathri, S.; Pereira, K.; Gorelsky, S.; Pike, A.;
LeBris, A.; DeBoef, B. J. Am. Chem. Soc. 2010, 132, 14676. (j) He, C.;
Fan, S.; Zhang, X. J. Am. Chem. Soc. 2010, 132, 12850.
ꢀ
(12) (a) Basle, O.; Bidange, J.; Shuai, Q.; Li, C.-J. Adv. Synth. Catal.
2010, 352, 1145. For decarbonylative arylation using rhodium as a
ꢀ
catalyst, see: (b) Shuai, Q.; Yang, L.; Guo, X. Y.; Basle, O.; Li, C.-J.
(9) (a) Deng, G.; Zhao., L.; Li, C.-J. Angew. Chem., Int. Ed. 2008, 47,
6278. (b) Deng, G.; Li, C.-J. Org. Lett. 2009, 11, 1171. (c) Deng, G.;
Ueda, K.; Yanagisawa, S.; Itami, K.; Li, C.-J. Chem.;Eur. J. 2009, 15,
333.
J. Am. Chem. Soc. 2010, 132, 12212.
(13) (a) Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett.
2009, 11, 3120. (b) Tang, B.; Song, R.; Wu, C.; Liu, Y.; Zhou, M.; Wei,
W.; Deng, G.; Yin, D.; Li, J. H. J. Am. Chem. Soc. 2010, 132, 8900.
(10) Surburg, H.; Panten, J. Common Fragrance and Flavor Materi-
als, 5th ed.; Wiley-VCH: Weinheim, Germany, 2006.
(11) Sartori, G.; Maggi, R. Advances in Friedel-Crafts Acylation
ꢀ
(14) (a) Tojo, G.; Fernandez, M. Oxidation of Alcohols to Aldehydes
ꢀ
and Ketones; Springer: Berlin, Germany, 2006. (b) Guillena, G.; Ramon, D.;
Yus, M. Angew. Chem., Int. Ed. 2007, 46, 2358. (c) Dobereiner, G.;
Crabtree, R. Chem. Rev. 2010, 110, 681.
Reactions; CRC Press: FL, 2010.
Org. Lett., Vol. 13, No. 7, 2011
1615