Organic Letters
Letter
(3) Cooze, C.; Dada, R.; Lundgren, R. J. Direct Formic Acid
Mediated Z-Selective Reductive Coupling of Dienes and Aldehydes.
Angew. Chem., Int. Ed. 2019, 58, 12246−12251.
of enantioselectivity. The most promising ligand to date has
been 49, which resulted in the formation of 50 in 63% yield
and 76% ee.
(4) (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.; Yoshida, K. A Chiral
Chelating Diene as a New Type of Chiral Ligand for Transition Metal
Catalysis: Its Preparation and Use for the Rhodium-Catalyzed
Asymmetric 1,4-Addition. J. Am. Chem. Soc. 2003, 125, 11508−
11509. (b) Otomaru, Y.; Kina, A.; Shintani, R.; Hayashi, T. C2-
Symmetric Bicyclo[3.3.1]nona-2,6-diene and Bicyclo[3.3.2]deca-2,6-
diene: New Chiral Diene Ligands Based on the 1,5-Cyclooctadiene
Framework. Tetrahedron: Asymmetry 2005, 16, 1673−1679. (c) Oto-
maru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. Preparation of C2-
Symmetric Bicyclo[2.2.2]octa-2,5-diene Ligands and Their Use for
Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids. J.
Org. Chem. 2005, 70, 2503−2508. (d) Nishimura, T.; Nagaosa, M.;
Hayashi, T. Chiral Tetrafluorobenzobarrelenes as Highly Efficient
Ligands for the Rhodium-catalyzed Asymmetric 1,4-Addition of
Arylboronic Acids. Chem. Lett. 2008, 37, 860−861. (e) Helbig, S.;
Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.; Frey, W. Chiral
Bicyclo[3.3.0]octa-2,5-dienes as Steering Ligands in Substrate-
Dependent Rhodium-Catalyzed 1,4-Addition of Arylboronic Acids
to Enones. Adv. Synth. Catal. 2007, 349, 2331−2337. (f) Feng, C.-G.;
Wang, Z.-Q.; Tian, P.; Xu, M.-H.; Lin, G.-Q. Easily Accessible C2-
Symmetric Chiral Bicyclo[3.3.0]dienes as Ligands for Rhodium-
Catalyzed Asymmetric 1,4-Addition. Chem. - Asian J. 2008, 3, 1511−
1516.
(5) (a) Defieber, C.; Paquin, J. F.; Serna, S.; Carreira, E. M. Chiral
[2.2.2] Dienes as Ligands for Rh(I) in Conjugate Additions of
Boronic Acids to a Wide Range of Acceptors. Org. Lett. 2004, 6,
3873−3876. (b) Paquin, J. F.; Defieber, C.; Stephenson, C. R. J.;
Carreira, E. M. Asymmetric Synthesis of 3,3-Diarylpropanals with
Chiral Diene−Rhodium Catalysts. J. Am. Chem. Soc. 2005, 127,
10850−10851. (c) Paquin, J. F.; Stephenson, C. R. J.; Defieber, C.;
Carreira, E. M. Catalytic Asymmetric Synthesis with Rh−Diene
Complexes: 1,4-Addition of Arylboronic Acids to Unsaturated Esters.
Org. Lett. 2005, 7, 3821−3824. (d) Defieber, C.; Grutzmacher, H.;
Carreira, E. M. Chiral Olefins as Steering Ligands in Asymmetric
Catalysis. Angew. Chem., Int. Ed. 2008, 47, 4482−502.
In conclusion, a one-step enantioselective synthesis of C2-
symmetric chiral COD ligands was achieved by means of a
double allylic C−H functionalization of COD. This trans-
formation illustrates the capacity of C−H functionalization to
rapidly generate synthetic complexity from a simple starting
material. Initial evaluation of these chiral COD ligands along
with their derivatives revealed they were effective in the
rhodium-catalyzed asymmetric arylation of cyclohex-2-enone.9
Further studies will need to be carried out to optimize the
ligands further and to determine if they can display unique
beneficial characteristics compared to the established chiral
COD ligands.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge at
Complete experimental procedures and compound
Accession Codes
mentary crystallographic data for this paper. These data can be
contacting The Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(6) Nagamoto, M.; Nishimura, T. Asymmetric Transformations
under Iridium/Chiral Diene Catalysis. ACS Catal. 2017, 7, 833−847.
(7) (a) Davies, H. M. L.; Liao, K. Dirhodium Tetracarboxylates as
Catalysts for Selective Intermolecular CH Functionalization. Nat.
Rev. Chem. 2019, 3, 347−360. (b) Davies, H. M. L.; Morton, D.
Guiding Principles for Site Selective and Stereoselective Intermo-
lecular C−H Functionalization by Donor/Acceptor Rhodium
Carbenes. Chem. Soc. Rev. 2011, 40, 1857−1869.
Notes
The authors declare the following competing financial
interest(s): H.M.L.D. is a named inventor on a patent entitled,
Dirhodium Catalyst Compositions and Synthetic Processes
Related Thereto (US 8,974,428, issued March 10, 2015). The
other authors have no competing financial interests.
(8) (a) Qin, C. M.; Davies, H. M. L. Role of Sterically Demanding
Chiral Dirhodium Catalysts in Site-Selective CH Functionalization
of Activated Primary CH Bonds. J. Am. Chem. Soc. 2014, 136,
9792−9796. (b) Guptill, D. M.; Davies, H. M. L. 2,2,2-Trichloroethyl
Aryldiazoacetates as Robust Reagents for the Enantioselective CH
Functionalization of Methyl Ethers. J. Am. Chem. Soc. 2014, 136,
17718−17721. (c) Liao, K. B.; Negretti, S.; Musaev, D. G.; Bacsa, J.;
Davies, H. M. L. Site-selective and Stereoselective Functionalization
of Unactivated CH Bonds. Nature 2016, 533, 230−234. (d) Liao,
K. B.; Pickel, T. C.; Oyarskikh, V. B.; Acsa, J. B.; Usaev, D. G. M.;
Davies, H. M. L. Site-selective and Stereoselective Functionalization
of Non-activated Tertiary CH Bonds. Nature 2017, 551, 609−613.
(e) Liao, K.; Yang, Y.-F.; Li, Y.; Sanders, J. N.; Houk, K. N.; Musaev,
D. G.; Davies, H. M. L. Design of Catalysts for Site-Selective and
Enantioselective Functionalization of Non-activated Primary C−H
Bonds. Nat. Chem. 2018, 10, 1048−1055. (f) Fu, J.; Ren, Z.; Bacsa, J.;
Musaev, D. G.; Davies, H. M. L. Desymmetrization of Cyclohexanes
by Site- and Stereoselective CH Functionalization. Nature 2018,
564, 395−399. (g) Liu, W.; Ren, Z.; Bosse, A. T.; Liao, K.; Goldstein,
E. L.; Bacsa, J.; Musaev, D. G.; Stoltz, B. M.; Davies, H. M. L.
Catalyst-Controlled Selective Functionalization of Unactivated C−H
Bonds in the Presence of Electronically Activated C−H Bonds. J. Am.
Chem. Soc. 2018, 140, 12247−12255.
ACKNOWLEDGMENTS
■
We thank Dr. John Bacsa (Emory University) for the X-ray
structure determination. Financial support was provided by
NSF under the CCI Center for Selective C−H Functionaliza-
tion (CHE-1700982). Funds to purchase the NMR and X-ray
spectrometers used in these studies were supported by the
NSF (CHE 1531620 and CHE 1626172).
REFERENCES
■
(1) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to
Catalysis; University Science Books: Sausalito, CA, 2010; p 48.
(2) Hesp, K. D.; Tobisch, S.; Stradiotto, M. [Ir(COD)Cl]2 as a
Catalyst Precursor for the Intramolecular Hydroamination of
Unactivated Alkenes with Primary Amines and Secondary Alkyl- or
Arylamines: A Combined Catalytic, Mechanistic, and Computational
Investigation. J. Am. Chem. Soc. 2010, 132, 413−426.
D
Org. Lett. XXXX, XXX, XXX−XXX