5096
R. S. Schwab et al. / Tetrahedron Letters 49 (2008) 5094–5097
organocatalyst 5 or 6
O
O
OH
O
O
OH
Ph
O
O
(10 mol%)
3a (10 mol%)
acetone, -15 oC, 24 h
H
Ph
H
acetone, -15 oC, 24 h
NO2
4
NO2
SMe
yield: 95 %
SeBn
Ph
anti:syn: 77:23
ee: 85 %
O
O
Ph
Ph
Ph
N
N
H
Scheme 3. Organocatalytic asymmetric aldol reaction with cyclohexanone.
H
N
H
N
H
OH
OH
5
6
50 % yield
85% ee
53 % yield
82 % ee
In summary, the results from this investigation demonstrate
that the cysteine-derived prolinamide is a robust and effective cat-
alyst for enantioselective aldol reaction. Expanding the scope of
this organocatalyst in asymmetric transformations is underway
in this laboratory.14
Scheme 2. Asymmetric aldol reaction organocatalyzed by 5 or 6. Yields and ee’s
refer to product 4.
inferior to that obtained with organocatalyst 3a (83% yield, 94% ee)
and is comparable to that obtained with 3g (R1 = Me, R2 = Ph; 60%
yield, 82% ee). These results indicate that the distance between the
sulfur atom and the pyrrolidine nucleus does not play a significant
role in the reaction outcome. Another change that was made, aim-
ing to refine the catalytic properties of our system, was the
Acknowledgments
The authors gratefully acknowledge CNPq, CAPES (Ph.D. fellow-
ship to R. S. Schwab), and FAPESP (Grant 07/02382-7 and scholar-
ship to M. W. Paixão) for financial support.
replacement of L-cysteine by their selenium analog, L-selenocys-
teine.13 In this way, organocatalyst 6 was prepared and its catalytic
behavior was tested toward our standard reaction, and the aldol
product was isolated in 50% yield and 85% ee. Direct comparison
of the results achieved using this selenium-derived prolinamide
with 3a shows that the selenium atom does not improve the effi-
ciency of the catalyst.
References and notes
1. For selected reviews on asymmetric organocatalysis, see: (a) List, B. Chem.
Commun. 2006, 819–824; (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004,
43, 5138–5175; (c) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001–
2011; (d) Lelais, G.; MacMillan, D. W. C. Aldrichim. Acta 2006, 39, 79–87; (e)
Gaunt, M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug Discovery Today
2007, 12, 8–27; (f) Erkkilä, A.; Majander, I.; Pihko, P. M. Chem. Rev. 2007, 107,
5416–5470; (g) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev.
2007, 107, 5471–5569; (h) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107,
5713–5743; (i) Davie, E. A. C.; Mennen, S. M.; Xu, Y.; Miller, S. Chem. Rev. 2007,
107, 5759–5812.
The optimal conditions were employed for the organocatalytic
asymmetric aldol reaction of acetone with a broad scope of alde-
hydes and the results of this study are summarized in Table 3. In
general, high enantioselectivities (82–94% ee) were obtained with
aldehydes substituted in the 4 position, with the exception of the
para-nitrobenzaldehyde, which furnished the corresponding aldol
adduct in a moderate 64% ee. The catalytic system displays some
sensitivity toward steric effects, and ortho-substituted benzalde-
hydes resulted in slightly decreased levels of ee’s.
The aldol reaction between the 2-cyclohexan-1-one and 4-nitro
benzaldehyde also proceeded smoothly under the standard condi-
tions, affording the corresponding product in 95% yield and 77:23
of diastereomeric ratio, favoring the anti diastereomer with high
level of enantioselectivity (Scheme 3).
2. (a) Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691–1693; (b) Limbach, M.
Chem. Biodiv. 2006, 3, 119–133.
3. (a) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, S.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-
D. J. Am. Chem. Soc. 2003, 125, 5262–5263; (b) Guo, H.-M.; Cun, L.-F.; Gong, L.-
Z.; Mi, A.-Q.; Jiang, Y.-Z. Chem. Commun. 2005, 1450–1452; (c) Tang, Z.; Yang,
Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. J. Am. Chem. Soc.
2005, 127, 9285–9289; (d) Chen, X.-H.; Luo, S.-W.; Tang, Z.; Cun, L.-F.; Mi, A.-Q.;
Jiang, Y.-Z.; Gong, L.-Z. Chem. Eur. J. 2007, 13, 689–701; (e) Xiong, Y.; Wang, F.;
Dong, S. X.; Liu, X. H.; Feng, X. M. Synlett 2008, 73–76; (f) Liu, K.; Haeu-
ssinger, D.; Woggon, W. D. Synlett 2007, 2298–2300; (g) Russo, A.; Botta, G.;
Lattanzi, A. Synlett 2007, 795–799; (h) Shi, L.-X.; Sun, Q.; Ge, Z.-M.; Zhu, Y.-Q.;
Cheng, T.-M. ; Li, R.-T. Synlett 2004, 2215–2217; (i) Tsogoeva, S. B.; Jagtap, S. B.
Synlett 2004, 2624–2626; (j) Martin, H. J.; List, B. Synlett 2003, 1901–1902.
4. (a) Raj, M.; Maya, V.; Ginotra, S. K.; Singh, V. K. Org. Lett. 2006, 8, 4097–4099;
(b) Maya, V.; Raj, M.; Singh, V. K. Org. Lett. 2007, 9, 2593–2595.
5. Mellah, M.; Voituriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133–5209.
6. Pellissier, H. Tetrahedron 2007, 63, 1297–1330.
Table 3
Organocatalytic asymmetric aldol reaction of acetone with several aromatic alde-
hydes
7. For
a very interesting paper on the asymmetric Rauhut–Currier reaction
catalyzed by protected cysteine, see: Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc.
2007, 129, 256–267.
8. (a) Gryco, D.; Lipinski, R. Adv. Synth. Catal. 2005, 347, 1948–1952; (b) Gryco, D.;
Lipinski, R. Eur. J. Org. Chem. 2006, 3864–3876; (c) Sakthivel, K.; Notz, W.; Bui,
T., ; Barbas, C. F., III. J. Am. Chem. Soc. 2001, 123, 5260–5267.
9. (a) Notz, W.; Sakthivel, K.; Bui, T.; Zhong, G.; Barbas, C. F., III. Tetrahedron Lett.
2001, 42, 199–201; (b) List, B. J. Am. Chem. Soc. 2000, 122, 9336–9337.
10. (a) Mandal, T.; Zhao, C.-G. Tetrahedron Lett. 2007, 48, 5803–5806;
Intramolecular Michael addition: (b) Hayashi, Y.; Gotoh, H.; Tamura, T.;
Yamaguchi, H.; Masui, R.; Shoje, M. J. Am. Chem. Soc. 2005, 127, 16028–16029.
11. For review on the application of chiral organoselenium compounds in
asymmetric catalysis, see: (a) Braga, A. L.; Lüdtke, D. S.; Vargas, F.; Braga, R.
C. Synlett 2006, 1453–1466; (b) Braga, A. L.; Lüdtke, D. S.; Vargas, F. Curr. Org.
Chem. 2006, 10, 1921–1938; (c) Wirth, T. Angew. Chem., Int. Ed. 2000, 39, 3740–
3749.
SBn
O
Ph
Ph
N
H
N
H
OH
O
O
OH
R3
O
3a (10 mol%)
H
R3
acetone, -15 oC, 24 h
4a-j
Entry
Product
R3
Yielda (%)
eeb (%)
1
2
3
4
5
6
7
8
4a
4b
4c
4d
4e
4f
Ph
83
40
53
57
56
56
35
36
94
64
61
87
85
81
82
72
4-NO2Ph
2-NO2Ph
4-ClPh
4-MePh
2-MePh
4-OMePh
2-OMePh
12. General procedure for the synthesis of compound 3a: Under an argon
atmosphere, N-methylmorpholine (1.01 g, 10 mmol) was added to a solution
of N-(tert-butoxycarbonyl)-L-proline (2.15 g, 10 mmol) in CHCl3 (100 mL) at
0 °C. After stirring for 15 min at this temperature, ethyl chloroformate (1.08 g,
10 mmol) was added dropwise and stirring was prolonged for additional
30 min at 0 °C. After this time a CHCl3 (10 mL) solution of the S-Bn-L-cysteine
4g
4h
methyl ester (2.61 g, 10 mmol) was added dropwise, followed by 1 equiv of N-
methylmorpholine and the resulting solution was stirred at 0 °C for additional
1 h and then at room temperature for 24 h. After this time the solution was
diluted with 30 mL of CHCl3, and washed with 1 M NaOH (2 ꢁ 20 mL), 1 M HCl
a
Isolated yield.
b
Enantioselectivities were determined by HPLC analysis and absolute configu-
rations were determined by comparison with the literature data.4