16154 J. Phys. Chem. B, Vol. 114, No. 49, 2010
Chen et al.
Experimental Section
References and Notes
(1) (a) Nguyen, B.; Neidle, S.; Wilson, W. D. Acc. Chem. Res. 2009,
42, 11–21. (b) Kim, S. K.; Lee, D. H.; Hong, J. I.; Yoon, J. Acc. Chem.
Res. 2009, 42, 23–31. (c) Tomizawa, M.; Casida, J. E. Acc. Chem. Res.
2009, 42, 260–269.
(2) (a) Nishino, T.; Umezawa, Y. Anal. Chem. 2008, 80, 6968–6973.
(b) Ludden, M. J. W.; Li, X.; Greve, J.; van Amerongen, A.; Escalante,
M.; Subramaniam, V.; Reinhoudt, D. N.; Huskens, J. J. Am. Chem. Soc.
2008, 130, 6964–6973. (c) Choi, H. S.; Takahashi, A.; Ooya, T.; Yui, N.
ChemPhysChem. 2006, 7, 1668–1670.
Materials. ꢀ-CD of reagent grade was recrystallized twice
from water and dried in vacuo at 100 °C for 24 h prior to use.
L- and D-tyrosine were purchased from Peptide Institute. All
bile salt guests (CA, DCA, GCA, and TCA) were purchased
from Sigma and used as received. Mono[6-O-(p-toluenesulfo-
nyl)]-ꢀ-CD (6-OTs-ꢀ-CD) was prepared by the reaction of ꢀ-CD
with p-toluenesulfonyl chloride in aqueous alkaline solution.24
Phosphate buffer solution of pH 7.20 (I ) 0.1 M) was used for
circular dichroism spectral measurements and ITC experiments.
Instruments. Circular dichroism spectral measurements were
performed in a conventional quartz cell (light path 1 cm) on a
JASCO J-720W spectropolarimeter equipped with a temperature
controller, and the temperature of the cell was kept constant at
(3) (a) Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1990, 29, 1304–1319.
(b) Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681–691. (c) Riela, S.;
D’Anna, F.; Lo Meo, P.; Gruttadauria, M.; Giacalone, R.; Noto, R.
Tetrahedron 2006, 62, 4323–4330. (d) Liu, Y.; Chen, G. S.; Chen, Y.; Ding,
F.; Chen, J. Org. Biomol. Chem. 2005, 3, 2519–2523. (e) Liu, Y.; Yang,
E. C.; Yang, Y. W.; Zhang, H. Y.; Fan, Z.; Ding, F.; Cao, R. J. Org. Chem.
2004, 69, 173–180. (f) Liu, Y.; Zhao, Y. L.; Zhang, H. Y.; Fan, Z.; Wen,
G. D.; Ding, F. J. Phys. Chem. B 2004, 108, 8836–8843. (g) Rekharsky,
M. V.; Inoue, Y. J. Am. Chem. Soc. 2002, 124, 813–826. (h) Schmidtchen,
F. P. Chem.sEur. J. 2002, 8, 3522–3529. (i) Bom, A.; Bradley, M.;
Cameron, K.; Clark, J. K.; van Egmond, J.; Feilden, H.; MacLean, E. J.;
Muir, A. W.; Palin, R.; Rees, D. C.; Zhang, M. Q. Angew. Chem., Int. Ed.
2002, 41, 265–270. (j) Kano, K.; Hasegawa, H. J. Am. Chem. Soc. 2001,
123, 10616–10627.
(4) (a) Szejtli, J. Chem. ReV. 1998, 98, 1743–1753. (b) Connors, K. A.
Chem. ReV. 1997, 97, 1325–1357. (c) Wallimann, P.; Marti, T.; Furer, A.;
Diederich, F. Chem. ReV. 1997, 97, 1567–1608. (d) Wenz, G.; Strassnig,
C.; Thiele, C.; Engelke, A.; Morgenstern, B.; Hegetschweiler, K.
Chem.sEur. J. 2008, 14, 7202–7211. (e) Han, C.; Li, H. small 2008, 4,
1344–1350. (f) Clark, J. L.; Peinado, J.; Stezowski, J. J.; Vold, R. L.; Huang,
Y.; Hoatson, G. L. J. Phys. Chem. B 2006, 110, 26375–26387. (g) Liu, Y.;
Song, Y.; Chen, Y.; Li, X. Q.; Ding, F.; Zhong, R. Q. Chem.sEur. J. 2004,
10, 3685–3696. (h) Ravoo, B. J.; Jacquier, J. C.; Wenz, G. Angew. Chem.,
Int. Ed. 2003, 42, 2066–2070.
1
25.0 °C. H NMR experiments were recorded on a Bruker
AV400 spectrometer, and 2D ROESY (rotating frame Over-
hauser effect spectroscopy) spectra were recorded on a Varian
Mercury VX300 instrument. All NMR experiments were carried
out in D2O.
Synthesis of L-Tyr-ꢀ-CD (1). L-Tyrosine (0.7 g) and 6-OTs-
ꢀ-CD (1.3 g) were dissolved in water (30 mL) containing
triethanolamine (20 mL), and the resulting mixture was heated
to reflux for 24 h with stirring under an argon atmosphere. After
the evaporation of most of the solvent under a reduced pressure,
the resulting solution was poured in anhydrous acetone (200
mL) with vigorous stirring to produce a pale-yellow precipitate.
The crude solid was collected by filtration and then purified by
Sephadex C-25 column chromatography with aqueous ammonia
(1.0 M) as an eluent, followed by chromatography on a
Sephadex G-25 column with deionizated water as eluent to give
a pale-yellow product (0.57 g, 44%). ESI-MS: m/z (relative
intensity), 1298.1 ([M + H]+, 100%), 1320.1 ([M + Na]+, 7%).
1H NMR (D2O, δ): 2.54-2.64 (m, 1H), 2.72-2.84 (m, 1H),
2.99-3.12 (d, 2H), 3.21-3.98 (m, 41H), 4.84-5.01(m, 7H),
6.71-6.85 (d, 2H), 6.98-7.09 (d, 2H). 13C NMR (100 MHz,
D2O, δ): 154.9, 129.6, 115.2, 101.8, 100.1, 82.9, 80.9, 73.1,
71.9, 60.0, 46.0, 35.5. Anal. Calcd for L-Tyr-ꢀ-CD:
C51H79NO37 ·6H2O, C, 43.56%; H, 6.52%; N, 1.00%. Found:
C, 43.43%; H, 6.59%; N, 0.85%. FT-IR (KBr) ν(cm-1): 3404,
2928, 1635, 1516, 1246, 849. UV λ (ε): 224 nm (6.23 × 103
dm3 mol-1 cm-1), 277 nm (1.36 × 103 dm3 mol-1 cm-1).
Synthesis of D-Tyr-ꢀ-CD (2). D-Tyr-ꢀ-CD was synthesized
in 41% yield using a similar method to the synthesis of 1. ESI-
MS: m/z (relative intensity), 1298.3 ([M + H]+, 100%). 1H NMR
(D2O, δ): 2.78-2.84 (m, 2H), 2.90-3.08 (m, 1H), 3.18-3.90
(m, 42H), 4.86-5.02 (m, 7H), 6.70-6.85 (d, 2H), 6.96-7.10
(d, 2H). 13C NMR (150 MHz, D2O, δ): 154.9, 130.6, 129.1,
115.4, 102.0, 101.2, 83.35, 81.1, 73.3, 72.2, 65.8, 60.4, 48.7,
37.8. Anal.. Calcd for D-Tyr-ꢀ-CD: C51H79NO37 ·8H2O, C,
42.47%; H, 6.64%; N, 0.97%. Found C, 42.62%; H, 6.54%; N,
0.95%. FT-IR (KBr) ν(cm-1): 3388, 2927, 1635, 1547, 1517,
1241, 836. UV λ (ε): 224 nm (8.04 × 103 dm3 mol-1 cm-1),
275 nm (1.65 × 103 dm3 mol-1 cm-1).
(5) Khan, A. R.; Forgo, P.; Stine, K. J.; D’Souza, V. T. Chem. ReV.
1998, 98, 1977–1996.
(6) (a) Nakai, K.; Tazuma, S.; Nishioka, T.; Chayama, K. Biochim.
Biophys. Acta 2003, 1632, 48–54. (b) Venneman, N. G.; van Kammen,
M.; Renooij, W.; VanBerge-Henegouwen, G. P.; van Erpecum, K. J.
Biochim. Biophys. Acta 2005, 1686, 209–219.
(7) (a) Cabrer, P. R.; Alvarez-Parrilla, E.; Meijide, F.; Seijas, J. A.;
Nunez, E. R.; Vazquez Tato, J. Langmuir 1985, 1, 5489–5495. (b) Singh,
A. P.; Cabrer, P. R.; Alvarez-Parrilla, E.; Meijide, F.; Vazquez Tato, J.
J. Inclusion Phenom. Macrocyclic Chem. 1999, 35, 335–348. (c) Cabrer,
P. R.; Alvarez-Parrilla, E.; Al-Soufi, W.; Meijide, F.; Rodriguez, Nunez,
E.; Vazquez Tato, J. Supramol. Chem. 2003, 15, 33–43.
(8) (a) Hamasaki, K.; Ikeda, H.; Nakamura, A.; Ueno, A.; Toda, F.;
Suzuki, I.; Osa, T. J. Am. Chem. Soc. 1993, 115, 5035–5040. (b) Wang,
Y.; Ikeda, T.; Ikeda, H.; Ueno, A.; Toda, F. Bull. Chem. Soc. Jpn. 1994,
67, 1598–1607. (c) Ikeda, H.; Nakamura, M.; Ise, N.; Oguma, N.; Nakamura,
A.; Ikeda, T.; Toda, F.; Ueno, A. J. Am. Chem. Soc. 1996, 118, 10980–
10988. (d) Matsushita, A.; Kuwabara, T.; Nakamura, A.; Ikeda, H.; Ueno,
A. J. Chem. Soc., Perkin Trans. 2 1997, 1705–1710.
(9) De Jong, M. R.; Engbersen, J. F. J.; Huskens, J.; Reinhoudt, D. N.
Chem.sEur. J. 2000, 6, 4034–4040.
(10) Wang, H.; Cao, R.; Ke, C. F.; Liu, Y.; Wada, T.; Inoue, Y. J. Org.
Chem. 2005, 70, 8703–8711.
(11) Liu, Y.; Shi, J.; Guo, D.-S. J. Org. Chem. 2007, 72, 8227–8234.
(12) Rekharsky, M. V.; Schwarz, F. P.; Tewari, Y. B.; Goldberg, R. N.;
Tanaka, M.; Yamashoji, Y. J. Phys. Chem. 1994, 98, 4098–4103.
(13) (a) Collo, A.; Meijide, F.; Rodriguez Nunez, E.; Vazquez Tato, J.
J. Pharm. Sci. 1996, 85, 9–15. (b) Cooper, A.; Nutley, M. A.; Camilleri, P.
Anal. Chem. 1998, 70, 5024–5028. (c) Liu, Y.; Zhang, N.; Chen, Y.; Chen,
G. S. Bioorg. Med. Chem. 2006, 14, 6615–6620.
(14) (a) Shimizu, H.; Kaito, A.; Hatano, M. Bull. Chem. Soc. Jpn. 1979,
52, 2678–2684. (b) Shimizu, H.; Kaito, A.; Hatano, M. Bull. Chem. Soc.
Jpn. 1981, 54, 513–519. (c) Kajta´r, M.; Horvath-Toro, C.; Kuthi, E.; Szejtli,
J. Acta Chim. Acad. Sci. Hung. 1982, 110, 327–355. (d) Kodaka, M. J. Am.
Chem. Soc. 1993, 115, 3702–3705.
(15) (a) Yang, S. Y.; Green, M. M.; Schultz, G.; Jha, S. K.; Muller,
A. H. E. J. Am. Chem. Soc. 1997, 119, 12404–12405. (b) McAlpine, S. R.;
Garcia-Garibay, M. A. J. Am. Chem. Soc. 1998, 120, 4269–4275. (c) Inoue,
Y.; Wada, T.; Sugahara, N.; Yamamoto, K.; Kimura, K.; Tong, L.-H.; Gao,
X.-M.; Hou, Z.-J.; Liu, Y. J. Org. Chem. 2000, 65, 8041–8050. (d) Balan,
B.; Gopidas, K. R. Chem.sEur. J. 2007, 13, 5173–5185.
(16) Sreerama, N.; Manning, M. C.; Powers, M. E.; Zhang, J. X.;
Goldenberg, D. P.; Woody, R. W. Biochemistry 1999, 38, 10814–10822.
(17) Bothner-By, A. A.; Stephens, R. L.; Lee, J.-M.; Warren, C. D.;
Jeanloz, R. W. J. Am. Chem. Soc. 1984, 106, 811–813.
Acknowledgment. We thank the 973 Program (2006CB-
932900), NNSFC (nos. 20932004, 20772062, and 20721062)
and Tianjin Natural Science Foundation (07QTPTJC29600) for
financial support.
Supporting Information Available: UV-vis spectra, cir-
cular dichroism spectra, and computational structures. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(18) Neuhaus, D.; Williamson, M. The Nuclear OVerhauser Effect in
Structural and Conformational Analysis; VCH Publishers: New York, 1989;
pp 123-135.