4 For chemoenzymatic approach, see:(a) A. N. Parvulescu, P. A. Jacobs
and D. E. De Vos, Adv. Synth. Catal., 2008, 350, 113; (b) C.
Roengpithya, D. A. Patterson, A. G. Livingston, P. C. Taylor, J. L. Irwin
and M. R. Parrett, Chem. Commun., 2007, 3462; (c) A. N. Parvulescu,
P. A. Jacobs and D. E. De Vos, Chem.–Eur. J., 2007, 13, 2034; (d) J.
B. Crawford, R. T. Skerlj and G. J. Bridger, J. Org. Chem., 2007, 72,
669; (e) A. J. Blacker, M. J. Stirling and M. I. Page, Org. Process Res.
Dev., 2007, 11, 642; (f) M. A. J. Veld, K. Hult, A. R. A. Palmans and
E. W. Meijer, Eur. J. Org. Chem., 2007, 5416; (g) M.-J. Kim, W.-H.
Kim, K. Han, Y. K. Choi and J. Park, Org. Lett., 2007, 9, 1157; (h) M.
Stirling, J. Blackerb and M. I. Page, Tetrahedron Lett., 2007, 48, 1247;
(i) C. E. Hoben, L. Kanupp and J.-E. Ba¨ckvall, Tetrahedron Lett.,
2008, 49, 977; (j) J. Paetzold and J.-E. Ba¨ckvall, J. Am. Chem. Soc.,
2005, 127, 17620; (k) L. K. Tha`len, D. Zhao, J.-B. Sortais, J. Paetzold,
C. Hoben and J.-E. Ba¨ckvall, Chem.–Eur. J., 2009, 15, 3403; (l) A. N.
Parvulescu, P. A. Jacobs and D. E. De Vos, Appl. Catal., A, 2009, 368,
9; (m) L. H. Andrade, A. V. Silva and E. C. Pedrozo, Tetrahedron Lett.,
2009, 50, 4331; (n) M. T. Reetz and K. Schimossek, Chimia, 1996, 50,
668.
5 For preliminary reports on amines racemization, see:(a) S. Escoubet,
S. Gastaldi, N. Vanthuyne, G. Gil, D. Siri and M. P. Bertrand, J. Org.
Chem., 2006, 71, 7288; (b) S. Escoubet, S. Gastaldi, N. Vanthuyne,
G. Gil, D. Siri and M. P. Bertrand, Eur. J. Org. Chem., 2006,
3242.
6 (a) M. Nechab, N. Azzi, N. Vanthuyne, M. P. Bertrand, S. Gastaldi
and G. Gil, J. Org. Chem., 2007, 72, 6918; (b) S. Gastaldi, S. Escoubet,
N. Vanthuyne, G. Gil and M. P. Bertrand, Org. Lett., 2007, 9, 837;
(c) L. El Blidi, M. Nechab, N. Vanthuyne, S. Gastaldi, G. Gil and M.
P. Bertrand, J. Org. Chem., 2009, 74, 2901.
8 For a review, see: F. Bordera, Chem. Rev., 2002, 102, 4817 and refs cited
therein.
9 M. Nechab, L. El Blidi, N. Vanthuyne, S. Gastaldi, M. P. Bertrand and
G. Gil, Org. Biomol. Chem., 2008, 6, 3917.
10 A.-L. Bottalla, S. Queyroy, N. Azzi-Schue, N. Vanthuyne, S. Gastaldi,
M. P. Bertrand and G. Gil, Tetrahedron: Asymmetry, 2009, 20, 2823.
11 For examples of use of coated subtilisin see: (a) L. Bore´n, B. Mart´ın-
Matute, Y. Xu, A. Co´rdova and J.-E. Ba¨ckvall, Chem.–Eur. J., 2006,
12, 225; (b) M.-J. Kim, Y. I. Chung, Y. K. Choi, H. K. Li, D. Kim and
J. Park, J. Am. Chem. Soc., 2003, 125, 11494; (c) S. G. Martinez, E.
Alvira, L. Vergara Cordero, A. Ferrer, I. Montane´s-Clemente and G.
Barletta, Biotechnol. Prog., 2002, 18, 1462.
12 L. Routaboul, N. Vanthuyne, S. Gastaldi, G. Gil and M. P. Bertrand,
J. Org. Chem., 2008, 73, 364.
13 The rate slow-down was assigned to the solvation of the amine
by hydrogen bonding that would increase the a-CH BDE. For the
incidence of intramolecular hydrogen bonding on the a-CH BDE in
amines, see: (a) J. Laleve´e, X. Allonas and J.-P. Fouassier, J. Am. Chem.
Soc., 2002, 124, 9613; (b) See also: ref.5b.
14 Furthermore, 1H-NMR analysis in the presence of an internal standard
showed that no degradation occurred. The results of the DKR
experiments achieved with this acyl donor further confirmed that 5a was
not epimerized, since no trace of any diastereomer of 5a was detected.
15 It must be underlined however, that the S–H BDE in trifluoroethane
thiol is stronger than all C–H BDEs mentioned in the text. The
direct comparison of the calculated values for BDEs of different types
might be hazardous. C–H BDE in 4 : 346.3 kJ mol-1; C–H BDE in N-
acetylalanine N-i-propyl amide : 360.9 kJ mol-1; trifluoroethane thiol
S–H BDE: 365.6 kJ mol-1 (at 298 K according to G3B3MP2 method).
16 C. S. Chen, Y. Fujimoto, C. J. Girdaukas and C. J. Sih, J. Am. Chem.
Soc., 1982, 104, 7294.
7 (a) H. Kitaguchi, P. A. Fitzpatrick, J. E. Huber and A. M. Klibanov,
J. Am. Chem. Soc., 1989, 111, 3094; (b) R. J. Kazlauskas and A. N. E.
Weissfloch, J. Mol. Catal. B: Enzym., 1997, 3, 65; (c) C. K. Savile and
R. J. Kazlauskas, J. Am. Chem. Soc., 2005, 127, 2104; (d) P. F. Mugford,
U. G. Wagner, Y. Jiang, K. Faber and R. J. Kazlauskas, Angew. Chem.,
Int. Ed., 2008, 47, 8782.
17 Only the natural S-isomer is recognized by the enzyme, therefore the
racemic acyl donor can be used without changing the result but the
quantity has to be doubled.
18 This happened to be the case for 1-phenyl-2-amino-propane.
4168 | Org. Biomol. Chem., 2010, 8, 4165–4168
This journal is
The Royal Society of Chemistry 2010
©