dichloromethane (1 mL). The mixture layered with hexanes
(2 mL) and was stored at ꢂ40 1C for 24 h from which crystals
of 2aꢀGaCl3 suitable for X-ray crystallography were grown
(0.34 g, 75%). 31P{1H} NMR (CD2Cl2) d 189.3; 1H NMR
5682–5685; (c) K. J. T. Noonan and D. P. Gates, Angew. Chem.,
Int. Ed., 2006, 45, 7271–7274; (d) K. J. T. Noonan, B. O. Patrick
and D. P. Gates, Chem. Commun., 2007, 3658–3660;
(e) B. H. Gillon, B. O. Patrick and D. P. Gates, Chem.
Commun., 2008, 2161–2163; (f) K. J. T. Noonan, B. H. Gillon,
V. Cappello and D. P. Gates, J. Am. Chem. Soc., 2008, 130,
12876–12877.
2
(CD2Cl2) d 8.60 (d, JPH = 23.7 Hz, 1H), 2.24 (m, 6H), 2.15
4
(m, 3H), 1.81 (m, 6H), 1.37 (d, JPH = 1.8, 9H). 13C{1H}
10 G. Becker, W. Uhl and H. J. Wessely, Z. Anorg. Allg. Chem., 1981,
479, 41–56.
11 O. Mundt, G. Becker, W. Uhl, W. Massa and M. Birkhahn,
Z. Anorg. Allg. Chem., 1986, 541, 319–335.
12 T. van der Does and F. Bickelhaupt, Phosphorus Sulfur Relat.
Elem., 1987, 30, 515–518.
13 A. Jouaiti, M. Geoffroy and G. Bernardinelli, Tetrahedron Lett.,
1992, 33, 5071–5074.
1
(CD2Cl2) d 189.8 (d, JPC = 24.1 Hz), 45.1, 41.0, 40.5, 36.1,
31.5 (d, JPC = 9.6 Hz), 29.4 (d, JPC = 7.1 Hz). Found: C,
3
3
43.67; H, 5.95%. C15H25PGaCl3 requires C, 43.68; H, 6.11%.
X-Ray crystallography
Crystals suitable for diffraction were immersed in Paratone-N
oil and mounted on a glass fiber. Data for 1aꢀGaCl3 were
collected on a Bruker X8 APEX diffractometer and for both
1aꢀAlCl3 and 2aꢀGaCl3 on a Bruker X8 APEX II diffracto-
meter with graphite-monochromated MoKa radiation. Data
were collected and integrated using the Bruker SAINT43
software package and corrected for absorption effects using
SADABS44 (1aꢀAlCl3) or TWINABS45 (1aꢀGaCl3 and
2aꢀGaCl3). 1aꢀGaCl3 crystallizes as a two-component twin
with the two components (major : minor E 3 : 1) related
by a 1801 rotation about the (0 0 1) reciprocal axis. 2aꢀGaCl3
crystallizes as a two-component twin with the two components
(major : minor E 2 : 1) related by a 1801 rotation about the
(1 0 0) reciprocal axis. All data sets were corrected for Lorentz
and polarization effects. All structures were solved by direct
methods46 and subsequent Fourier difference techniques and
refined anisotropically for all non-hydrogen atoms using
the SHELXTL47 crystallographic software package from
Bruker-AXS. H-atoms were included in calculated positions
(riding model). Compounds 1aꢀAlCl3 and 1aꢀGaCl3 are
isomorphous and were refined using the same origin
(Table 2). CCDC 768435 (1aꢀAlCl3), 768436 (1aꢀGaCl3) and
768437 (2aꢀGaCl3).w
14 A. Jouaiti, M. Geoffroy and G. Bernardinelli, Tetrahedron Lett.,
1993, 34, 3413–3416.
15 A. Jouaiti, M. Geoffroy and G. Bernardinelli, Chem. Commun.,
1996, 437–438.
16 H. Kawanami, K. Toyota and M. Yoshifuji, J. Organomet. Chem.,
1997, 535, 1–5.
17 A. S. Ionkin and W. J. Marshall, Heteroat. Chem., 2002, 13,
662–666.
18 O. Daugulis, M. Brookhart and P. S. White, Organometallics,
2002, 21, 5935–5943.
19 A. Termaten, M. van der Sluis and F. Bickelhaupt, Eur. J. Org.
Chem., 2003, 2049–2055.
20 M. Yam, J. H. Chong, C. W. Tsang, B. O. Patrick, A. E. Lam and
D. P. Gates, Inorg. Chem., 2006, 45, 5225–5234.
21 J. Dugal-Tessier, G. R. Dake and D. P. Gates, Angew. Chem., Int.
Ed., 2008, 47, 8064–8067.
22 E. Niecke and E. Symalla, Chimia, 1985, 39, 320–322.
23 J. I. Bates and D. P. Gates, J. Am. Chem. Soc., 2006, 128,
15998–15999.
24 C. C. Cummins, R. R. Schrock and W. M. Davis, Angew. Chem.,
Int. Ed. Engl., 1993, 32, 756–759.
25 A. Marinetti, S. Bauer, L. Ricard and F. Mathey, Organometallics,
1990, 9, 793–798.
26 M. Hayashi, Y. Matsuura, Y. Nishimura, T. Yamasaki, Y. Imai
and Y. Watanabe, J. Org. Chem., 2007, 72, 7798–7800.
27 H. Grutzmacher and H. Pritzkow, Angew. Chem., Int. Ed. Engl.,
¨
1992, 31, 99–101.
28 J. R. Goerlich and R. Schmutzler, Phosphorus, Sulfur Silicon Relat.
Elem., 1995, 101, 245–251.
29 S. Kurz, H. Oesen, J. Sieler and E. Hey-Hawkins, Phosphorus,
Sulfur Silicon Relat. Elem., 1996, 117, 189–196.
Acknowledgements
30 (a) R. Waterman, Organometallics, 2007, 26, 2492–2494;
(b) L. B. Han and T. D. Tilley, J. Am. Chem. Soc., 2006, 128,
13698–13699; (c) R. Wolf, S. Gomez-Ruiz, J. Reinhold,
W. Bohlmann and E. Hey-Hawkins, Inorg. Chem., 2006, 45,
9107–9113; (d) J. D. Masuda, A. J. Hoskin, T. W. Graham,
C. Beddie, M. C. Fermin, N. Etkin and D. W. Stephan,
Chem.–Eur. J., 2006, 12, 8696–8707; (e) S. Blaurock and E.
Hey-Hawkins, Z. Anorg. Allg. Chem., 2002, 628, 37–40;
(f) Z. M. Hou, T. L. Breen and D. W. Stephan, Organometallics,
1993, 12, 3158–3167; (g) S. Kurz and E. Hey-Hawkins,
J. Organomet. Chem., 1993, 462, 203–207.
We are grateful to the Natural Sciences and Engineering
Research Council (NSERC) of Canada, the Canada Foundation
for Innovation and the British Columbia Knowledge
Development Fund for support of this work. J.I.B. thanks
NSERC for PGS M and D scholarships.
Notes and references
31 C. W. Tsang, C. A. Rohrick, T. S. Saini, B. O. Patrick and
D. P. Gates, Organometallics, 2004, 23, 5913–5923.
32 L. Weber, M. H. Scheffer, H. G. Stammler and A. Stammler, Eur.
J. Inorg. Chem., 1999, 1607–1611.
33 T. W. Mackewitz, D. Ullrich, U. Bergstrasser, S. Leininger and
¨
M. Regitz, Liebigs Ann./Recl., 1997, 1997, 1827–1839.
34 Characteristic bond lengths in free molecules, CRC Handbook of
Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton,
FL, 84th edn, 2003.
1 M. Regitz and O. J. Scherer, Multiple bond and low coordination in
phosphorus chemistry, Thieme, Stuttgart, 1990.
2 K. B. Dillon, F. Mathey and J. F. Nixon, Phosphorus: the carbon
copy, Wiley, 1998.
3 F. Mathey, Angew. Chem., Int. Ed., 2003, 42, 1578–1604.
4 J. I. Bates, J. Dugal-Tessier and D. P. Gates, Dalton Trans., 2010,
39, 3151–3159.
5 V. A. Wright and D. P. Gates, Angew. Chem., Int. Ed., 2002, 41,
2389–2392.
35 D. J. Collins and H. A. Jacobs, Aust. J. Chem., 1987, 40,
1989–2004.
6 V. A. Wright, B. O. Patrick, C. Schneider and D. P. Gates, J. Am.
Chem. Soc., 2006, 128, 8836–8844.
36 C. Alvarez-Ibarra, M. S. Arias-Pe
M. A. Rodrıguez-Barranco, Org. Prep. Proced. Int., 1990, 22,
77–84.
´
rez, E. Moya and
7 R. C. Smith, X. F. Chen and J. D. Protasiewicz, Inorg. Chem.,
2003, 42, 5468–5470.
8 R. C. Smith and J. D. Protasiewicz, J. Am. Chem. Soc., 2004, 126,
2268–2269.
´
37 G. Becker, O. Mundt, M. Rossler and E. Schneider, Z. Anorg. Allg.
¨
Chem., 1978, 443, 42–52.
38 H. Stetter and W.-D. Last, Chem. Ber., 1969, 102, 3364.
39 G. Becker and W. Holderich, Chem. Ber., 1975, 108, 2484–2485.
¨
9 (a) C. W. Tsang, M. Yam and D. P. Gates, J. Am. Chem. Soc.,
2003, 125, 1480–1481; (b) C. W. Tsang, B. Baharloo, D. Riendl,
M. Yam and D. P. Gates, Angew. Chem., Int. Ed., 2004, 43,
ꢁc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010 New J. Chem., 2010, 34, 1660–1666 | 1665