1650
J. Y. Lee et al.
LETTER
Table 2 Radical Alkylation of Carbonyl Compounds Using Vinyl
Triflates 7 and 9a (continued)
(8) (a) Ritter, K. Synthesis 1993, 735. (b) Roth, G. P.; Fuller, C.
E. J. Org. Chem. 1989, 54, 4899. (c) Pridgen, L. N.; Huang,
G. K. Tetrahedron Lett. 1998, 39, 8421. (d) Limmert, M.
E.; Roy, A. H.; Hartwig, J. F. J. Org. Chem. 2005, 70, 9364.
(9) (a) Huffman, M. A.; Yasuda, N. Synlett 1999, 471.
(b) Baxter, J. M.; Steinhubel, D.; Palucki, M.; Davies, I. W.
Org. Lett. 2005, 7, 215.
Entry Substrate
Product
Yield (%)b
CO2Et
O
5
67c
(10) Cui, D.-M.; Meng, Q.; Zheng, J.-Z.; Zhang, C. Chem.
Commun. 2009, 1577.
4
CO2Et
(11) (a) Wille, U. J. Am. Chem. Soc. 2002, 124, 14. (b) Wille, U.
Org. Lett. 2000, 2, 3485.
O
(12) (a) Kim, S.; Kim, S. Bull. Chem. Soc. Jpn. 2007, 80, 809.
(b) Kim, S.; Kim, S.; Otsuka, N.; Ryu, I. Angew. Chem. Int.
Ed. 2005, 44, 6183. (c) Kim, S.; Lim, C. J. Angew. Chem.
Int. Ed. 2002, 41, 3265.
(13) For alkynylations, see: (a) Gong, J.; Fuchs, P. L. J. Am.
Chem. Soc. 1996, 118, 4486. (b) Gong, J.; Fuchs, P. L.
Tetrahedron Lett. 1997, 38, 787. For alkenylations, see:
(c) Xiang, J.; Fuchs, P. L. J. Am. Chem. Soc. 1996, 118,
11986. (d) Xiang, J.; Jiang, W.; Gong, J.; Fuchs, P. L. J. Am.
Chem. Soc. 1997, 119, 4123. (e) For allylation, see: Xiang,
J.; Evarts, J.; Rivkin, A.; Curran, D. P.; Fuchs, P. L.
Tetrahedron Lett. 1998, 39, 4163.
(14) (a) Kharasch, M. S.; Brown, H. C. J. Am. Chem. Soc. 1942,
64, 329. (b) Tabushi, I.; Hamuro, J.; Oda, R. J. Org. Chem.
1968, 33, 2108.
(15) (a) Bentrude, W. G.; Darnall, K. R. J. Am. Chem. Soc. 1968,
90, 3588. (b) Citterio, A.; Filippini, L. Synthesis 1986, 473.
(c) Kim, S.; Kim, N.; Chung, W.-j.; Cho, C. H. Synlett 2001,
937.
S
S
CO2Et
6
72
54
O
O
O
O
Ph
7
O
O
Ph
Ph
8
66
73
O
O
9
a The reaction was carried out using AIBN as initiator at reflux for 9 h.
b Yield of isolated product.
c A 3:2 mixture of the two compounds was obtained.
Acknowledgment
(16) Akindele, T.; Yamada, K.-I.; Tomioka, K. Acc. Chem. Res.
2009, 42, 345; and references cited therein.
We thank the Center for Molecular Design and Synthesis at KAIST
and Nanyang Technological University for financial support.
(17) Typical procedure for radical alkylation of a carbonyl
compound: A solution of iodomethyl phenylsulfone (56 mg,
0.2 mmol), vinyl triflate 7 (76 mg, 0.3 mmol), and
hexamethylditin (33 mg, 0.1 mmol) in benzene (1 mL; 0.2 M
in iodide) was degassed with nitrogen for 10 min, and the
solution was then irradiated in a photochemical reactor (300
nm) for 5 h. The solvent was evaporated under reduced
pressure and the residue was purified by silica gel column
chromatography (EtOAc–hexane, 1:10) to give 1-phenyl-3-
(phenylsulfonyl)propan-1-one (38 mg, 69%) as a colorless
oil. 1H NMR (CDCl3, 400 MHz): d = 3.45–3.49 (m, 2 H),
3.52–3.56 (m, 2 H), 7.42–7.46 (m, 2 H), 7.55–7.57 (m, 3 H),
7.63–7.64 (m, 1 H), 7.88–7.94 (m, 4 H); 13C NMR (CDCl3,
100 MHz): d = 31.3, 51.0, 127.9 (C2), 128.0 (C2), 128.7
(C2), 129.4 (C2), 133.7, 133.9, 135.8, 139.0, 195.3
(18) Typical procedure for radical alkylation of an unactivated
C–H bond: A solution of vinyl triflate 9 (76 mg, 0.3 mmol)
and AIBN (5 mg, 0.03 mmol) in THF (1 mL) was degassed
with nitrogen for 10 min, and the solution was heated at
reflux (80 °C) for 9 h under nitrogen. The solvent was
evaporated under reduced pressure and the residue was
purified by silica gel column chromatography (EtOAc–
hexane, 1:50) to give 16 (41 mg, 65%) as a colorless oil. 1H
NMR (CDCl3, 400 MHz): d = 1.33 (t, J = 7.2 Hz, 3 H), 1.48–
1.55 (m, 1 H), 1.84–1.92 (m, 2 H), 2.06–2.14 (m, 1 H), 2.94
(dd, J = 16.5, 5.7 Hz, 1 H), 3.10 (dd, J = 16.5, 7.1 Hz, 1 H),
3.67–3.73 (m, 1 H), 3.80–3.85 (m, 1 H), 4.29 (q, J = 7.2 Hz,
2 H), 4.26–4.32 (m, 1 H); 13C NMR (CDCl3, 100 MHz): d =
13.9, 25.4, 31.4, 45.1, 62.4, 67.9, 74.3, 160.8, 192.6
References and Notes
(1) (a) House, H. O. Modern Synthetic Reactions; Benjamin,
W. A., Ed.; Menlo Park: CA, 1972, Chap. 9. (b) Caine, D.
In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I.; Pattenden, G., Eds.; Pergamon: Oxford, 1991,
Vol. 3, 1–63. (c) Seebach, D. Angew. Chem. Int. Ed. 1988,
27, 1624.
(2) Kim, S. In Radicals in Organic Synthesis, Vol 2.; Renaud,
P.; Sibi, M., Eds.; Wiley-VCH: Weinheim, 2001, 1–21.
(3) (a) Watanabe, Y.; Yoneda, T.; Ueno, Y.; Toru, T.
Tetrahedron Lett. 1990, 31, 6669. (b) Miura, K.; Fujisawa,
H.; Saito, D.; Hosomi, A. Org. Lett. 2001, 3, 2591.
(4) Roepel, M. G. Tetrahedron Lett. 2002, 43, 1973.
(5) (a) Perkins, M. J.; Roberts, B. P. J. Chem. Soc., Perkin
Trans. 1975, 2, 77. (b) Dang, H.-S.; Franchi, P.; Roberts,
B. P. Chem. Commun. 2000, 499. (c) Fielding, A. J.;
Franchi, P.; Roberts, B. P.; Smits, T. M. J. Chem. Soc.,
Perkin Trans. 2002, 2, 155.
(6) (a) Kim, S.; Lim, C. J.; Song, C.; Chung, W.-j. J. Am. Chem.
Soc. 2002, 124, 14306. (b) Kim, S.; Lim, C. J. Angew.
Chem. Int. Ed. 2004, 43, 5378. (c) Song, H.-J.; Lim, C. J.;
Lee, S.; Kim, S. Chem. Commun. 2006, 2893.
(7) Kim, S.; Lee, J. Y. Synlett 2008, 49.
Synlett 2010, No. 11, 1647–1650 © Thieme Stuttgart · New York