C O M M U N I C A T I O N S
L. Angew. Chem., Int. Ed. 2009, 48, 5701–5704. For a ruthenium-catalyzed
addition of alcohols to acrylonitriles, see: Yi, C. S.; Yun, S. S.; He, Z.;
Guzei, I. A. Organometallics 2003, 22, 3031–3033.
(5) (a) Kisanga, P. B.; Ilankumaran, P.; Fetterly, B. M.; Verkade, J. G. J. Org.
Chem. 2002, 67, 3555–3560. (b) Stewart, I. C.; Bergman, R. G.; Toste,
F. D. J. Am. Chem. Soc. 2003, 125, 8696–8697.
(6) (a) Enders, A.; Balensiefer, T. Acc. Chem. Res. 2004, 37, 534–541. (b)
Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis; Wiley-VCH:
Weinheim, 2005. (c) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506–
7510. (d) Enders, D.; Niemeier, O.; Henseler, A. Chem. ReV. 2007, 107,
5606–5655. (e) Marion, N.; Diez-Gonzalez, S.; Nolan, I. P. Angew. Chem.,
Int. Ed. 2007, 46, 2988–3000. (f) Phillips, E. M.; Chan, A.; Scheidt, K. A.
Aldrichim. Acta 2009, 42, 55–66. For a review on Lewis base catalysis,
see: Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–
1638.
(7) (a) Mattson, A. E.; Bharadwaj, A. R.; Scheidt, K. A. J. Am. Chem. Soc.
2004, 126, 2314–2315. (b) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7,
905–908. (c) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334–
5335. (d) Reynolds, T. E.; Stern, C. A.; Scheidt, K. A. Org. Lett. 2007, 9,
2581–2584. (e) Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130,
2740–2741. (f) Kawanaka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem.
Soc. 2009, 131, 18028–18029. (g) Lee, J. Y.; Roberts, J. M.; Farha, O. K.;
Sarjeant, A. A.; Scheidt, K. A.; Hupp, J. T. Inorg. Chem. 2009, 48, 9971–
9973. (h) Phillips, E. M.; Wadamoto, M.; Roth, H. S.; Ott, A. W.; Scheidt,
K. A. Org. Lett. 2009, 11, 105–108. (i) Phillips, E. M.; Roberts, J. M.;
Scheidt, K. A. Org. Lett. 2010, 12, 2830–2833. (j) Cardinal-David, B.;
Raup, D. E. A.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 5345–5347.
(8) (a) Alder, R. W.; Allen, P. R.; Williams, S. J. Chem. Commun. 1995, 1267–
1268. (b) Kim, Y. J.; Streitwieser, A. J. Am. Chem. Soc. 2002, 124, 5757–
5761. (c) Amyes, T. L.; Diver, S. T.; Richard, J. P.; Rivas, F. M.; Toth, K.
J. Am. Chem. Soc. 2004, 126, 4366–4374. (d) Chu, Y.; Deng, H.; Cheng,
J. P. J. Org. Chem. 2007, 72, 7790–7793.
In summary, we have discovered a novel conjugate addition of
alcohols that demonstrates carbenes as efficient Brønsted base
catalysts. A free carbene with the addition of lithium chloride allows
for the addition of alcohols to enones in good to excellent yields at
ambient temperature and with no oligomerization of the substrates.
This new carbene-alcohol combination does not require stoichio-
metric amounts of strong base and also extends beyond additions
to enones. The formation of vinyl ethers is possible through the
1,4-addition of alcohols to ynones, and a tandem conjugate addition/
Michael reaction occurs to generate a tetrahydropyran with good
selectivity. Studies directed toward enhancing asymmetric induction
and exploring further the mechanism are currently ongoing. This
particular development of N-heterocyclic carbenes as efficient and
unusual Brønsted base catalysts creates new opportunities for future
direct bond-forming processes.
(9) (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583–
3586. (b) Nyce, G. W.; Lamboy, J. A.; Connor, E. F.; Waymouth, R. M.;
Hedrick, J. L. Org. Lett. 2002, 4, 3587–3590.
(10) Additional imidazolium and triazolium salts were evaluated as catalysts
but provided lower yields of 2 than IMes · HCl (A).
(11) More LiCl did not improve the yield. One equivalent of LiCl without the
free NHC or azolium salt resulted in no conjugate addition reaction. The
combination of 5 mol % n-BuLi with BnOH in toluene followed by the
addition of 1 afforded <30% of desired product 2, as observed by GC,
along with multiple additional peaks compared to the NHC-catalyzed
process.
(12) (a) Inanaga, J.; Baba, Y.; Hanamoto, T. Chem. Lett. 1993, 22, 241. (b)
Kuroda, H.; Tomita, I.; Endo, T. Polymer 1997, 38, 3655–3662. (c) Tejedor,
D.; Santos-Exposito, A.; Mendez-Abt, G.; Ruiz-Perez, C.; Garcia-Tellado,
F. Synlett 2009, 8, 1223–1226, and references cited therein.
(13) (a) Fischer, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem. Soc.
2006, 128, 1472–1473. (b) He, L.; Jian, T. Y.; Ye, S. J. Org. Chem. 2007,
72, 7466–7468.
(14) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453–2456.
(15) The deuterium labeling study shown below supports that the free carbene
derived from IMes is a competent Brønsted base:
Acknowledgment. This work was supported by NIGMS
(GM73072-01 and P50 GM086145-01), AstraZeneca, Amgen, and
GlaxoSmithKline. E.M.P. thanks the ACS Division of Organic
Chemistry for a fellowship sponsored by Organic Reactions
(2008-2009). Funding for the NU Integrated Molecular Structure
Education and Research Center (IMSERC) has been furnished in
part by the NSF (CHE-9871268). We thank Sigma-Aldrich and
FMCLithium for generously providing reagents and Prof. Dean
Tantillo (University of California, Davis) for helpful discussions.
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of
References
(16) Deuterium labeling studies with alcohols to determine any potential kinetic
isotope effects have not been productive, presumably because the active
protons of the products can rapidly exchange with the alcohol proton under
the reaction conditions; see ref 15.
(17) The crossover experiment with 2 and (E)-1-phenyloct-2-en-1-one shown
below supports that the conjugate addition is not reversible under NHC
conditions. However, at temperatures beginning at 70 °C, the products begin
to revert back to starting materials, indicating reversibility.
(1) Williamson, A. W. J. Chem. Soc. 1852, 106, 229–239.
(2) The calculated heat of reaction for the conjugate addition between an alcohol
and R,ꢀ-unsaturated ketone is approximately -11 to -16 kcal/mol (semi-
empirical/AM-1). The entropy penalty for combining two molecules is ∼7-
10 kcal/mol. See: Houk, K. N.; Tucker, J. A.; Dorigo, A. E. Acc. Chem.
Res. 1990, 23, 107–113. By comparison, our calculated heat of a Diels-
Alder reaction using this same approach, 25-30 kcal/mol, correlates with
the reported values. See: (a) Rogers, F. E. J. Phys. Chem. 1972, 76, 106–
109. (b) Rogers, F. E.; Quan, S. W. J. Phys. Chem. 1973, 77, 828–831.
For reviews of conjugate additions, see: (c) Perlmutter, P. Conjugate
Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, U.K.,
1992. (d) Jung, M. E. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991.
(3) (a) Seagers, W. J.; Elving, P. J. J. Am. Chem. Soc. 1949, 71, 2947. (b)
Fuer, H.; Markofsky, S. J. Org. Chem. 1964, 29, 929–934. (c) Duffy, J. L.;
Kurth, J. A.; Kurth, M. J. Tetrahedron Lett. 1993, 34, 1259–1260. (d)
Dulcere, J. P.; Dumez, E. Chem. Commun. 1997, 971–972. (e) Adderley,
N. J.; Buchanan, D. J.; Dixon, D. J.; Laine, D. I. Angew. Chem., Int. Ed.
2003, 42, 4241–4244. (f) Hernandez-Juan, F. A.; Richardson, R. D.; Dixon,
D. J. Synlett 2006, 2673–2675.
(4) For stoichiometric alkoxide conjugate additions to ꢀ,γ-unsaturated R-ke-
toesters, see: Xiong, X.; Ovens, C.; Pilling, A. W.; Ward, J. W.; Dixon,
D. J. Org. Lett. 2008, 10, 565–567. For a secondary amine-catalyzed tandem
reaction, see: Reyes, E.; Talavera, G.; Vicario, J. L.; Badia, D.; Carrillo,
(18) For examples of these unwanted reactions, see: (a) Bu¨chi, G.; Hansen, J. H.;
Knutson, D.; Koller, E. J. Am. Chem. Soc. 1958, 80, 5517–5524. (b) Kabas,
G.; Rutz, H. C. Tetrahedron 1966, 22, 1219–1226.
(19) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418–
8420.
(20) The enantiomeric excess does not change as a function of time during the
reaction. This reaction was done in triplicate with ee values between 10
and 11% ee. See Supporting Information for details.
JA1061196
9
J. AM. CHEM. SOC. VOL. 132, NO. 38, 2010 13181