S. Naiya et al. / Inorganica Chimica Acta 363 (2010) 2488–2495
2495
Appendix A. Supplementary material
CCDC No. 760310 (1) and 668119 (2) contain the supplemen-
tary crystallographic data for compounds 1, and 2. These data
can be obtained free of charge from The Cambridge Crystallo-
Supplementary data associated with this article can be found, in
References
[1] V.K. Bhardwaj, N. Aliaga-Alcalde, M. Corbella, G. Hundal, Inorg. Chim. Acta 363
(2010) 97.
[2] S. Hayami, S. Miyazaki, M. Yamamoto, K. Hiki, N. Motokawa, A. Shuto, K. Inoue,
T. Shinmyozu, Y. Maeda, Bull. Chem. Soc. Jpn. 79 (2006) 442.
[3] J.P. Costes, F. Dahan, J.M. Dominguez-Vera, J.P. Laurent, J. Ruiz, J. Sotiropoulos,
Inorg. Chem. 33 (1994) 3908.
´
[4] P. Mukherjee, M.G.B. Drew, C.J. Gomez-Garcıa, A. Ghosh, Inorg. Chem. 48
(2009) 5848.
[5] M.S. Ray, A. Ghosh, R. Bhattacharya, G. Mukhopadhyay, M.G.B. Drew, J. Ribas, J.
Chem. Soc., Dalton Trans. (2004) 252.
[6] M.S. Ray, A. Ghosh, S. Chaudhuri, M.G.B. Drew, J. Ribas, Eur. J. Inorg. Chem. 15
(2004) 3110.
Fig. 6. The cyclic voltammogram of complexes 1 and 2 (scan rate 100 mV/s).
[7] M.S. Ray, G. Mukhopadhyay, M.G.B. Drew, T.H. Lu, S. Chaudhuri, A. Ghosh,
Inorg. Chem. Commun. 6 (2003) 961.
[8] M.S. Ray, S. Chattopadhyay, M.G.B. Drew, A. Figuerola, J. Ribas, C. Diaz, A.
Ghosh, Eur. J. Inorg. Chem. (2005) 4562.
[9] H.D. Bian, J.Y. Xu, W. Gu, S.P. Yan, P. Cheng, D.Z. Liao, Z.H. Jiang, Polyhedron 22
(2003) 2927.
for 2 is observed at ꢁ0.69 V (Epc) and the corresponding Epa appears
at ꢁ0.51 V. The E1/2 value is ꢁ0.60 V (versus SCE).
´
[10] P. Mukherjee, M.G.B. Drew, C.J. Gomez-Garcıa, A. Ghosh, Inorg. Chem. 48
4. Conclusions
(2009) 4817.
[11] J.P. Costes, F. Dahan, J.P. Laurent, Inorg. Chem. 25 (1986) 413.
[12] J.P. Costes, G. Cros, M.H. Darbieu, J.P. Laurent, Inorg. Chim. Acta 60 (1982) 111.
[13] S. Chattopadhyay, M.S. Ray, S. Chaudhuri, G. Mukhopadhyay, G. Bocelli, A.
Cantoni, A. Ghosh, Inorg. Chim. Acta 359 (2006) 1367.
[14] M.S. Ray, R. Bhattacharya, S. Chaudhuri, L. Righi, G. Bocelli, G. Mukhopadhyay,
A. Ghosh, Polyhedron 22 (2003) 617 (and references therein).
[15] B. Sarkar, G. Bocelli, A. Cantoni, A. Ghosh, Polyhedron 27 (2008) 693 (and
references therein).
[16] D. Mandal, V. Bertolasi, J. Ribas-Ariño, G. Aromí, D. Ray, Inorg. Chem. 47 (2008)
3465.
[17] B. Sarkar, M.S. Ray, M.G.B. Drew, A. Figuerola, C. Diaz, A. Ghosh, Polyhedron 25
(2006) 3084.
[18] Y.-B. Dong, X. Zhao, R.-Q. Huang, Inorg. Chem. 43 (2004) 5603 (and reference
therein).
[19] P. Mukherjee, M.G.B. Drew, A. Ghosh, Eur. J. Inorg. Chem. (2008) 3372.
[20] J. Wang, B. Slater, A. Alberola, H. Stoeckli-Evans, F.S. Razavi, M. Pilkington,
Inorg. Chem. 46 (2007) 4763.
[21] G. Das, R. Shukla, S. Mandal, R. Singh, P.K. Bharadwaj, Inorg. Chem. 36 (1997)
323.
[22] J.P. Costes, F. Dahan, M.B.F. Fernandez, M.I.F. Garcia, A.M.G. Deibe, J. Sanmartin,
Inorg. Chim. Acta 274 (1998) 73.
The isolation of two complexes shows that the Schiff base li-
gand, HL2 undergoes hydrolysis under the experimental conditions
and yields the ternary complex similar to its 1,3-propanediamine
analogue [17] whereas HL1 remains intact and forms the
l3-OH
bridged trinuclear CuII complex. Therefore, it is reasonable to con-
clude that the tridentate N,N,O donor ligands, obtained by the
mono-condensation of 1,3-propanediamine and its derivatives
with 1-benzoylacetone undergo hydrolysis during complex forma-
tion with CuII and yield mixed-ligand ternary complexes. The steric
strains imparted to the system by the two adjacent six-membered
chelate rings in the complex of the Schiff base with copper(II) seem
to be responsible for the instability of the Schiff base complex. The
observation is significant as the reverse reaction i.e. condensation
of amine with carbonyl group in presence of metal ion is a general
procedure for synthesis of Schiff base and their complexes. The sta-
bility of HL1 indicates that the Schiff bases derived from salicylal-
dehyde are less prone to hydrolysis than those from
benzylacetone. The better bridging ability of the phenoxo oxygen
compare to ketonic oxygen of benzylacetone that provides a stron-
ger peripheral bridging may be responsible for the stability of com-
plex 1. This complex is a new example of the family of [Cu3O4]
compounds for which the classical magnetostructural correlations
are found to drive the nature of the magnetic interaction. Notably,
among the salicylaldehyde derived Schiff base complexes of this
type, 1 has the smallest Cu–O(H)–Cu angle that shows antiferro-
magnetic coupling – a slight decrease in this angle causes ferro-
magnetic coupling.
[23] P. Mukherjee, M.G.B. Drew, M. Estrader, C. Diaz, A. Ghosh, Inorg. Chim. Acta
361 (2008) 161.
[24] B. Sarkar, M.S. Ray, Y.-Z. Li, Y. Song, A. Figuerola, E. Ruiz, J. Cirera, J. Cano, A.
Ghosh, Chem. Eur. J. 13 (2007) 9297.
[25] CRYSALIS, Oxford Diffraction Ltd., Abingdon, UK, 2006.
[26] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[27] ABSPACK, Oxford Diffraction Ltd., Oxford, UK, 2005.
[28] Bruker Axs Inc., 6300 Enterprise Lane, Madison, WI 53719-1173, USA.
[29] D.T. Cromer, J.T. Weber, International Tables for X-ray Crystallography, vol. IV,
The Kynoch Press, Birmingham, UK, 1994. p.2 (Table 2.2A).
[30] J.A. Ibers, W.C. Hamilton, Acta Crystallogr. 17 (1964) 781.
[31] L.J. Farrugia, ORTEP-3 for WINDOWS, University of Glasgow, Scotland, UK, 1999.
[32] B. Sarkar, S. Konar, C.J. Gómez-García, A. Ghosh, Inorg. Chem. 47 (2008) 11611.
[33] B.J. Hathaway, A.A.G. Tomlinson, Coord. Chem. Rev. 5 (1970) 1.
[34] A.W. Addison, T.N. Rao, J. Reedijk, J. Van Rijn, G.C. Verschoor, J. Chem. Soc.,
Dalton Trans. (1984) 1349.
[35] G.G. Evans, J.A. Boeyens, Acta Crystallogr. B45 (1989) 581.
[36] Z. Lu, P. Gamez, I. Mutikainen, U. Turpeinen, J. Reedijk, Cryst. Growth Des. 7
(2007) 1669 (and references therein).
[37] E. Ruiz, S. Alvarez, J. Cano, V. Polo, J. Chem. Phys. 123 (2005) 164110.
[38] C. Biswas, M.G.B. Drew, A. Figuerola, S. Gómez-Coca, E. Ruiz, V. Tangoulis, A.
Ghosh, Inorg. Chim. Acta 363 (2010) 846.
[39] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, Inorg.
Chem. 38 (1999) 6081.
[40] J.J. Borrás-Almenar, J.M. Clemente-Juan, E. Coronado, B.S. Tsukerblat, J.
Comput. Chem. 22 (2001) 985.
Acknowledgements
We thank CSIR, Government of India [Junior Research Fellow-
ship to S.N, Sanction No.09/028 (0702)/2008-EMR-I] and the EPSRC
(UK) and the University of Reading for funds for the X-Calibur Sys-
tem. We also thank ‘‘National Natural Science Foundation of China
(20631030 and 20771057)”.