Molecules 2017, 22, 1808
9 of 10
References
1.
2.
3.
Février, M.; Dorgham, K.; Rebollo, A. CD4+ T cell depletion in human immunodeficiency virus (HIV)
infection: Role of apoptosis. Viruses 2011, 3, 586–612. [CrossRef] [PubMed]
Buckheit, K.W.; Lu, Y.; Buckheit, R.W., Jr. Development of dual-acting pyrimidinediones as novel and
highly potent topical anti-HIV microbicides. Antimicrob. Agents Chemother. 2011, 55, 5243–5254. [CrossRef]
4.
5.
Berger, B.J.; Hussain, F.; Roistacher, K. Bacterial infections in HIV-infected patients. Infect. Dis. N. Am. 1994
8, 449–465.
,
Dejesus, E.; Young, B.; Morales-Ramirez, J.O.; Sloan, L.; Ward, D.J.; Flaherty, J.F.; Ebrahimi, R.; Maa, J.-F.;
Reilly, K.; Ecker, J.; et al. Simplification of antiretroviral therapy toa single-tablet regimen consisting of
Efavirenz, Emtricitabine, and Tenofovir Disoproxil Fumarate versus unmodified antiretroviral therapy in
virologically suppressed HIV-1-infected patients. J. Acquir. Immune Defic. Syndr. 2009, 51, 163–174. [CrossRef]
6.
7.
8.
9.
Fra˛czek, T.; Paneth, A.; Kamin´ski, K.; Krakowiak, A.; Paneth, P. Searching for novel scaffold of triazole
non-nucleoside inhibitors ofHIV-1 reverse transcriptase. J. Enzym. Inhib. Med. Chem. 2016, 31, 481–489.
Darst, S. New inhibitors targeting bacterial RNA polymerase. Trends Biochem. Sci. 2004, 29, 159–162. [CrossRef]
Chopra, I. Bacterial RNA polymerase: A promising target for the discovery of new antimicrobial agents.
Curr. Opin. Investig. Drugs 2007, 8, 600–607. [PubMed]
Mukhopadhyay, J.; Das, K.; Ismail, S.; Koppstein, D.; Jang, M.; Hudson, B.; Sarafianos, S.; Tuske, S.; Patel, J.;
Jansen, R.; et al. The RNA polymerase “switch region” is a target for inhibitors. Cell 2008, 135, 295–307.
10. Szilvay, A.M.; Stern, B.; Blichenberg, A.; Helland, D.E. Structural and functional similarities between HIV-1
0
reverse transcriptase and the Escherichia coli RNA polymerase
β
subunit. FEBS Lett. 2000, 484, 43–47.
11. Belogurov, G.A.; Vassylyeva, M.N.; Sevostyanova, A.; Appleman, J.R.; Xiang, A.X.; Lira, R.; Webber, S.E.;
Klyuyev, S.; Nudler, E.; Artsimovitch, I.; et al. Transcription inactivation through local refolding of the RNA
12. Haebich, D.; von Nussbaum, F. Lost in transcription—Inhibition of RNA polymerase. Angew. Chem. Int. Ed.
13. Shea, R.O.; Moser, H.E. Physicochemical properties of antibacterial compounds: Implications for drug
discovery. J. Med. Chem. 2008, 51, 2871–2878.
14. Elgaher, W.A.M.; Sharma, K.K.; Haupenthal, J.; Saladini, F.; Pires, M.; Real, E.; Mely, Y.; Hartmann, R.W.
Discovery and structure-based optimization of 2-ureidothiophene-3-carboxylic acids as dual bacterial RNA
polymerase and viral reverse transcriptase inhibitors. J. Med. Chem. 2016, 59, 7212–7222. [CrossRef]
15. Sahner, J.H.; Groh, M.; Negri, M.; Haupenthal, J.; Hartmann, R.W. Novel small molecule inhibitors targeting
the “switch region” of bacterial RNAP: Structure-based optimization of a virtual screening hit. Eur. J.
16. Benno, R.; Hildegard, B. Splitting of hexamethylenetetramine addition compounds of N-haloacetylated
substituted anilines be means of sulfur dioxide. Pharmazie 1949, 4, 149–150.
17. ie, H.; Ng, D.; Savionv, S.N.; Dey, B.; Kwong, P.D.; Wyatt, R.; Smith, A.B., 3rd; Hendrickson, W.A.
Structure-activity relationships inthe binding of chemically derivatized CD4 to gp120 from human
immunodeficiency virus. J. Med. Chem. 2007, 50, 4898–4908.
18. The European Committee on Antimicrobial Susceptibility Testing. European Committee for Antimicrobial
Susceptibility Testing (EUCAST) Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial
Agents by Broth Dilution; EUCAST Discussion Document E. Dis 5.1; The European Committee on
Antimicrobial Susceptibility Testing: Växjö, Sweden, 2003.
19. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility
Testing of Yeasts; M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012.