Given these observations, a more complex mechanism than
that outlined in Scheme 1 is likely involved.
3 J. Louie, C. W. Bielawski and R. H. Grubbs, J. Am. Chem. Soc.,
2001, 123, 11312–11313; B. Schmidt and M. Pohler, Org. Biomol.
Chem., 2003, 1, 2512–2517.
4 A. E. Sutton, B. A. Seigal, D. F. Finnegan and M. L. Snapper,
J. Am. Chem. Soc., 2002, 124, 13390–13391; B. Schmidt, Eur. J.
Org. Chem., 2003, 816–819; D. Finnegan, B. A. Seigal and
M. L. Snapper, Org. Lett., 2006, 8, 2603–2606.
5 S. Beligny, S. Eibauer, S. Maechling and S. Blechert, Angew.
Chem., Int. Ed., 2006, 45, 1900–1903; A. A. Scholte, M. H. An
and M. L. Snapper, Org. Lett., 2006, 8, 4759–4762.
6 B. A. Seigal, C. Fajardo and M. L. Snapper, J. Am. Chem. Soc.,
2005, 127, 16329–16332; B. Schmidt and M. Pohler, J. Organomet.
Chem., 2005, 690, 5552–5555.
ð5Þ
In summary, we have developed a single-vessel, ruthenium-
catalyzed, enyne metathesis/hydrovinylation sequence. Unlike
other ruthenium-catalyzed hydrovinylations, this transformation
proceeds stereoselectively with overall 1,4-addition of ethylene
across the 1,3-dienes. Further studies into the selectivity,
scope, and mechanism of this process, as well as applications
to natural product synthesis, are currently underway.
7 B. G. Kim and M. L. Snapper, J. Am. Chem. Soc., 2006, 128,
52–53.
8 A. Zhang and T. V. RajanBabu, J. Am. Chem. Soc., 2006, 128,
54–55; G. Buono, C. Siv, G. Peiffer, C. Triantaphylides, P. Denis,
A. Mortreux and F. Petit, J. Org. Chem., 1985, 50, 1781–1782;
T. V. RajanBabu, Synlett, 2009, 853–885; T. V. RajanBabu, Chem.
Rev., 2003, 103, 2845–2860.
9 C. S. Yi, D. W. Lee and Y. Chen, Organometallics, 1999, 18,
2043–2045; C. S. Yi, Z. He and D. W. Lee, Organometallics, 2001,
20, 802–804; Z. He, C. S. Yi and W. A. Donaldson, Org. Lett.,
2003, 5, 1567–1569; Z. He, C. S. Yi and W. A. Donaldson, Synlett,
2004, 1312–1314.
10 M. B. Dinger and J. C. Mol, Organometallics, 2003, 22, 1089–1095;
J. Louie and R. H. Grubbs, Organometallics, 2002, 21, 2153–2164;
M. Arisawa, M. Terada, K. Takahashi, M. Nakagawa and
A. Nishida, J. Org. Chem., 2006, 71, 4255–4261.
11 M. Mori, N. Sakakibara and A. Kinoshita, J. Org. Chem., 1998,
63, 6082–6083; M. Rosillo, G. Dominguez, L. Casarrubios,
U. Amador and J. Perez-Castells, J. Org. Chem., 2004, 69,
2084–2093.
We thank the National Science Foundation (CHE-0612875/
0911212) for financial support. R.V.A. is grateful to the
Spanish government for a visiting student fellowship. We also
acknowledge Schering-Plough for X-ray facility support and
Materia for the gift of metathesis catalyst.
Notes and references
1 P. Schwab, M. B. France, J. W. Ziller and R. H. Grubbs, Angew.
Chem., Int. Ed. Engl., 1995, 34, 2039–2041; A. Furstner, Angew.
Chem., Int. Ed., 2000, 39, 3012–3043; R. H. Grubbs and
T. M. Trnka, Acc. Chem. Res., 2001, 34, 18–29. For non-
metathetic activities of Ru alkylidenes, see: B. Alcaide,
P. Almendros and A. Luna, Chem. Rev., 2009, 109, 3817–3858.
2 L. F. Tietze and N. Rackelmann, Pure Appl. Chem., 2004, 76,
1967–1983; J.-C. Wasilke, S. J. Obrey, R. T. Baker and
G. C. Bazan, Chem. Rev., 2005, 105, 1001–1020; A. Ajamian and
J. G. Gleason, Angew. Chem., Int. Ed., 2004, 43, 2–8; D. E. Fogg
and E. N. dos Santos, Coord. Chem. Rev., 2004, 248, 2365–2779;
V. Dragutan and I. Dragutan, J. Organomet. Chem., 2006, 691,
5129–5147.
12 G. Hilt, S. Luers and F. Schmidt, Synthesis, 2004, 634–638;
¨
2001, 40, 387–389; G. Hilt and S. Luers, Synthesis, 2002, 609–618.
¨
G. Hilt, F.-X. du Mesnil and S. Luers, Angew. Chem., Int. Ed.,
¨
13 1,4-Hydrovinylation yields reported are based on isolated yields
corrected for product purity as determined by GC analyses.
14 When multiple attempts using silica gel chromatography were used
to improve product purity, increased levels of minor byproducts
were observed by NMR and recovery of the desired 1,4-hydro-
vinylation products suffered significantly.
15 HBF4 likely promotes the dissociation of PCy3 (see ref. 8).
ꢁc
This journal is The Royal Society of Chemistry 2010
5694 | Chem. Commun., 2010, 46, 5692–5694