Journal of the American Chemical Society
Communication
pair effects: (a) Muller, P.; Rossier, J.-C. J. Chem. Soc., Perkin Trans. 2
2000, 2232. (b) Goering, H. L.; Levy, J. F. J. Am. Chem. Soc. 1964, 86,
120.
(3) Pronin, S. V.; Reiher, C. A.; Shenvi, R. A. Nature 2013, 503, 300.
(4) Nucleophilic substitution of substrates involving back-side
participation of an internal group, such as migrating aryl group, the
norbornyl systems, or an α-ferrocenyl moeity, has been observed to give
products with varying levels of overall retention of stereochemistry
essentially via sequential double inversion: (a) Singler, R. E.; Cram, D. J.
J. Am. Chem. Soc. 1972, 94, 3512. (b) García Martínez, A.; Teso Vilar, E.;
García Fraile, A.; Martínez-Ruiz, P. Eur. J. Org. Chem. 2001, 2001, 2805.
(c) Gokel, G. W.; Marquarding, D.; Ugi, I. K. J. Org. Chem. 1972, 37,
3052.
(5) Rare examples of simple secondary benzylic substrates have been
reported to give products with low levels of overall retention of
stereochemistry (10−35%), but these measurements were performed
using optical rotation techniques which can be imprecise or misleading:
(a) Okamoto, K.; Hayashi, M.; Shingu, H. Bull. Chem. Soc. Jpn. 1966, 39,
408. (b) Okamoto, K.; Nitta, I.; Dohi, M.; Shingu, H. Bull. Chem. Soc.
Jpn. 1971, 44, 3220.
Figure 2. Proposed intermediate showing a transient carbocation
interacting with only one of the six naphthalene walls through cation−π
interactions (X = leaving group).
(6) For examples of SN2 reactions of benzylic substrates with inversion,
see: Streitweiser, A. Solvolytic Displacement Reactions 1st ed.; McGraw-
Hill: New York, 1962.
(7) Substitution reactions proceeding with SNi mechanism to give
products with overall retention have also been reported: Cram, D. J. J.
Am. Chem. Soc. 1953, 75, 332.
(8) (a) Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997. (b) Pluth,
M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem. Res. 2009, 42, 1650.
(c) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem., Int. Ed.
2009, 48, 3418. (d) Avram, L.; Cohen, Y.; Rebek, J., Jr. Chem. Commun.
2011, 47, 5368. (e) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew.
Chem., Int. Ed. 2011, 50, 114.
(9) Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem.,
Int. Ed. 2007, 46, 2366.
(10) Sato, S.; Iida, J.; Suzuki, K.; Kawano, M.; Ozeki, T.; Fujita, M.
Science 2006, 313, 1273.
(11) Dong, V. M.; Fiedler, D.; Carl, B.; Bergman, R. G.; Raymond, K.
N. J. Am. Chem. Soc. 2006, 128, 14464.
cation can rotate, thus giving product with overall retention of
stereochemistry.
In conclusion, solvolytic displacement reactions that normally
undergo inversion of stereochemistry in bulk hydroxylic solvent
have their stereochemistry reversed when the substitution takes
place within the cavity of K12Ga4L6 nanovessels. To interpret
these results, we propose not only that the cavity of the host
assembly can stabilize the developing positively charged
intermediate in the transition state through cation−π interaction,
but also that the naphthalene walls of the complex block the back
side of the carbocation and thereby control the stereochemical
outcome of its substitution to give products with high levels of
overall retention. To our knowledge, this observation is
unprecedented in the field of catalysis by supramolecular host
complexes.
(12) (a) Hart-Cooper, W. M.; Clary, K. N.; Toste, F. D.; Bergman, R.
G.; Raymond, K. N. J. Am. Chem. Soc. 2012, 134, 17873. (b) Yoshizawa,
M.; Tamura, M.; Fujita, M. Science 2006, 312, 251. (c) Kuil, M.; Soltner,
T.; van Leeuwen, P. W. N. M.; Reek, J. N. H. J. Am. Chem. Soc. 2006, 128,
11344. (d) Iwasawa, T.; Hooley, R. J.; Rebek, J., Jr. Science 2007, 317,
493. (e) Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.;
Toste, F. D. Nat. Chem. 2013, 5, 100.
(13) Caulder, D. L.; Powers, R. E.; Parac, T. N.; Raymond, K. N. Angew.
Chem., Int. Ed. 1998, 37, 1840.
(14) (a) Hastings, C. J.; Pluth, M. D.; Bergman, R. G.; Raymond, K. N.
J. Am. Chem. Soc. 2010, 132, 6938. (b) Hastings, C. J.; Backlund, M. P.;
Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2011, 123,
10758.
(15) (a) Leung, D. H.; Fiedler, D.; Bergman, R. G.; Raymond, K. N.
Angew. Chem., Int. Ed. 2004, 43, 963. (b) Leung, D. H.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 9781.
(16) Zhao, C.; Sun, Q.-F.; Hart-Cooper, W. M.; DiPasquale, A. G.;
Toste, F. D.; Bergman, R. G.; Raymond, K. N. J. Am. Chem. Soc. 2013,
135, 18802.
(17) Lin, S.; Jacobsen, E. N. Nat. Chem. 2012, 4, 817.
(18) Hamilton, G. L.; Kanai, T.; Toste, F. D. J. Am. Chem. Soc. 2008,
130, 14984.
(19) Wang, Z. J.; Brown, C. J.; Bergman, R. G.; Raymond, K. N.; Toste,
F. D. J. Am. Chem. Soc. 2011, 133, 7358.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectroscopic data. This material is
■
S
AUTHOR INFORMATION
Corresponding Authors
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Director, Office of Science,
Office of Basic Energy Sciences, and the Division of Chemical
Sciences, Geosciences, and Biosciences of the U.S. Department
of Energy at LBNL (DE-AC02-05CH11231). The authors thank
Kaking Yan for complex 1, and Rebecca Triano and William
Hart-Cooper for helpful discussions.
(20) See Supporting Information for experimental details.
(21) (a) Stauffer, D. A.; Barrans, R. E.; Dougherty, D. A. Angew. Chem.,
Int. Ed. 1990, 29, 915. (b) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997,
97, 1303. (c) Mecozzi, S.; West, A. P.; Dougherty, D. A. J. Am. Chem. Soc.
1996, 118, 2307. (d) Tsuzuki, S.; Yoshida, M.; Uchimaru, T.; Mikami,
REFERENCES
■
(1) Vollhardt, K. P. C.; Schore, N. E. Organic Chemistry, 5th ed.; W. H.
Freeman and Co.: New York, 2007; pp 215−226.
(2) The stereochemistry of solvolysis of certain tertiary alkyl substrates
and the secondary p-chlorobenzhydryl p-nitrobenzoate substrate has
been found to be dependent on reaction conditions, and can lead to
varying levels of retention or inversion, presumably controlled by ion
M. J. Phys. Chem. A 2001, 105, 769. (e) Kovbasyuk, L.; Kramer, R. Chem.
̈
Rev. 2004, 104, 3161.
14412
dx.doi.org/10.1021/ja508799p | J. Am. Chem. Soc. 2014, 136, 14409−14412