BACKBONE CYCLIZATION, OCTAPEPTIDE-LIGANDS, SH2-DOMAIN, SHP-1
initiated by multiple phosphotyrosine motifs. J. Immunol. 2006; 176:
6603–6614.
29 Clark TD, Sastry M, Brown C, Wagner G. Solid-phase synthesis
of backbone-cyclized β-helical peptides. Tetrahedron 2006; 62:
9533–9540.
10 Pathak MK, Yi T. Sodium stibogluconate is a potent inhibitor of
protein tyrosine phosphatases and augments cytokine responses in
hemopoietic cell lines. J. Immunol. 2001; 167: 3391–3397.
11 Yang J, Liang X, Niu T, Meng W, Zhao Z, Zhou GW. Crystal structure
of the catalytic domain of protein-tyrosine phosphatase SHP-1. J.
Biol. Chem. 1998; 273: 28199–281207.
12 Yang J, Chen Z, Niu T, Liang X, Zhao ZJ, Zhou GW. Structural basis for
substrate specificity of protein-tyrosine phosphatase SHP-1. J. Biol.
Chem. 2000; 275: 4066–4071.
13 Frank C, Burkhardt C, Imhof D, Ringel J, Zscho¨rnig O, Wieligmann K,
Zacharias M,Bo¨hmer F.Effectivedephosphorylationofsrcsubstrates
by SHP-1. J. Biol. Chem. 2004; 279: 11375–11383.
14 Massa PT, Saha S, Wu C, Jarosinski KW. Expression and function of
the protein tyrosine phosphatase SHP-1 in oligodendrocytes. Glia
2000; 29: 376–385.
30 Hariton-Gazal E, Rosenbluh J, Zakai N, Fridkin G, Brack-Werner R,
Wolff H, Devaux C, Gilon C, Loyter A. Functionalanalysisofbackbone
cyclic peptides bearing the arm domain of the HIV Rev protein:
characterization of the karyophilic properties and inhibition of Rev-
induced gene expression. Biochemistry 2005; 44: 11555–11566.
31 Qvit N, Hatzubai A, Shalev DE, Friedler A, Ben-Neriah Y, Gilon C.
Design and synthesis of backbone cyclic phosphorylated peptides:
the IκB model. Biopolymers (Peptide Science) 2008; 91: 157–168.
32 Hess S, Linde Y, Ovadia O, Safrai E, Shalev DE, Swed A, Halbfinger E,
Lapidot T, Winkler I, Gabinet Y, Feier A, Yarden D, Xiang Z,
Portillo FP, Haskell-Luevano C, Gilon C, Hoffmann A. Backbone cyclic
peptidomimetic melanocortin-4 receptor agonist as a novel orally
administrated drug lead for treating obesity. J. Med. Chem. 2008; 51:
1026–1034.
15 Abu-Dayyeh I, Shio MT, Sato S, Akira S, Cousineau R, Oliver M.
Leishmania-induced IRAK-1 inactivation is mediated by SHP-1
interacting with an evolutionarily conserved KTIM motif. PLoS Negl.
Trop. Dis. 2008; 2: e305 (www.plosntd.org).
16 Nadan D, Reiner NE. Leishmania donovani engages in regulatory
interferencebytargetingmacrophageproteintyrosinephosphatase
SHP-1. Clin. Immunol. 2005; 114: 266–277.
17 Imhof D, Wavreille AS, May A, Zacharias M, Tridandapani S, Pei D.
Sequence specificity of SHP-1 and SHP-2 Src homology 2 domains.
Critical roles of residues beyond the pY+3 Position. J. Biol. Chem.
2006; 281: 20271–20282.
18 Sweeney MC, Wavreille A-S, Park J, Butchar JP, Tridandapani S, Pei D.
Decoding protein–protein interactions through combinatorial
chemistry: sequence specificity of SHP-1, SHP-2, and SHIP SH2
domains. Biochemistry 2005; 44: 14932–14947.
19 Daeron M, Jaeger SD, Pasquier L, Vivier E. Immunoreceptortyrosine-
based inhibition motifs: a quest in the past and future. Immunol. Rev.
2008; 224: 11–43.
20 Beebe KD, Wang P, Arabaci G, Pei D. Determination of the binding
specifity of the SH2 domains of protein tyrosine phosphatase SHP-1
through the screening of a combinatorial phosphotyrosyl peptide
library. Biochemistry 2000; 39: 13251–13260.
21 Imhof D, Wieligmann K, Hampel K, Nothmann D, Zoda MS, Schmidt-
Arras D, Bo¨hmer F, Reissmann S. Design and biological evaluation
of linear and cyclic phosphopeptide ligands of the N-terminal SH2
domain of protein tyrosine phosphatase SHP-1. J. Med. Chem. 2005;
48: 1528–1539.
22 Wieligmann K, Castro LF, Zacharias M. Molecular dynamics
simulations on the free and complexed N-terminal SH2 domain
of SHP-2. In Silico Biol. 2002; 2: 305–311.
33 Bitan G, Muller D, Kasher R, Gluhov EV, Gilon C. Building units for
N-backbone cyclic peptides. Part 4. Synthesis of protected Nα-
functionalized alkyl amino acids by reductive alkylation of natural
amino acids. J. Chem. Soc., Perkin Transactions 1: Organic and
Bioorganic Chem. 1997; 10: 1501–1510.
34 Gazal S, Gellerman G, Gilon C. Novel Gly building units for backbone
cyclization: synthesis and incorporation into model peptides.
Peptides 2003; 24: 1847–1852.
35 Loffet A, Zhang HX. Allyl based groups for side chain protection of
amino acids. Int. J. Pept. Prot. Res. 1993; 42: 346–351.
36 Guibe F. Allylic protecting groups and their use in a complex
environment part ii: allylic protecting groups and their removal
through catalytic palladium π-allyl methodology. Tetrahedron 1998;
54: 2967–3042.
37 Nahm S, Weinreb S. N-Methoxy-N-methylamides as effective
acylating agents. Tetrahedron Lett. 1981; 22: 3815–3818.
38 Fehrentz J-A, Castro B. An efficient synthesis of optically active α-
(t-butoxycarbonyl-amino)-aldehydes from α-amino acids. Synthesis
1983; 676–678.
39 Imhof D, Nothmann D, Zoda MS, Hampel K, Wegert J, Bo¨hmer FD,
Reissmann S. Synthesis of linear and cyclic phosphopeptides
as ligands for the N-terminal SH2 –domain of protein tyrosine
phosphatase SHP-1. J. Pept. Sci. 2005; 11: 390–400.
40 Gothe R, Seyfahrth L, Schumann C, Agricola I, Reissmann S,
Lifferth A, Birr C, Filatova MP, Kritsky A, Kibirev V. Combination of
allyl protection and Hycram-linker technology for the synthesis of
peptides with problematical amino acids and sequences. J. Prakt.
Chem. 1999; 341: 369–377.
41 Perich JW. Synthesis of Tyr(P)-containing peptides via ‘‘on-line’’
phosphorylation of the tyrosine residue on the solid phase. Lett.
Pept. Sci. 1996; 3: 127–132.
23 Mueller B, Besser D, Kleinwaechter P, Arad O, Reissmann S. Synthesis
of N-carboxyalkyl and N-aminoalkyl functionalized dipeptide
building units for the assembly of backbone cyclic peptides. J.
Pept. Res. 1999; 54: 383–393.
42 Perich JW.Synthesisofphosphopeptidesviaglobalphosphorylation
onthesolidphase:resolutionofH-phosphonateformation.Lett.Pept.
Sci. 1998; 5: 49–55.
24 Besser D, Mueller B, Agricola I, Reissmann S. Synthesis of
differentially protected N-acylated reduced pseudodipeptides as
building units for backbone cyclic peptides. J. Pept. Sci. 2000; 6:
130–138.
25 Schumann C, Seyfarth L, Greiner G, Reissmann S. Synthesis of
different types of dipeptide building units containing N- or C-
terminal arginine for the assembly of backbone cyclic peptides. J.
Pept. Res. 2000; 55: 428–435.
26 Schumann C, Seyfarth L, Greiner G, Paegelow I, Reissmann S.
Synthesis and biological activities of new side chain and backbone
cyclic bradykinin analogues. J. Pept. Res. 2002; 60: 128–140.
27 Reissmann S, Imhof D. Development of conformationally restricted
analogues of bradykinin and somatostatin using constrained amino
acids and different types of cyclization. Curr. Med. Chem. 2004; 11:
2823–2844.
28 Besser D, Mu¨ller B, Kleiwa¨chter P, Greiner G, Seyfarth L, Steinmet-
zer T, Arad O, Reissmann S. Synthesis and characterization of oc-
tapeptide somatostatin analogues with backbone cyclization: com-
parison of different strategies, biological activities and enzymatic
stabilities. J. Prakt. Chem. 2000; 342: 537–545.
43 Attard TJ, O‘Brien-Simpson N, Reynolds EC. Synthesis of
phosphopeptides in the Fmoc mode. Int. J. Pept. Res. Ther. 2007;
13: 447–468.
44 Yu HM, Chen ST, Wang KT. Enhanced coupling efficiency in solid-
phase peptide synthesis by microwave irradiation. J. Org. Chem.
1992; 57: 4781–4784.
45 Brandt M, Gammeltoft S, Jensen KJ. Microwave heating for solid-
phase peptide synthesis: general evaluation and application to
15-mer phosphopeptides. Inter. J. Pept. Res. and Ther. 2006; 12:
349–357.
46 Paul R.O-Acylationoftyrosineduringpeptidesynthesis.J.Org.Chem.
1963; 28: 236–237.
47 Girin SK, Svachkin YuP. Natural peptides and their analogs. XV.
Study of the effect of a solvent on the rates of O- and N-
acylation under peptide synthesis conditions using the method
of p-nitrophenylesters. Zh. Obshch. Khim. 1978; 48: 1887–1891.
48 Martinez J, Tolle JC, Bodanszky M. Side reactions in peptide
synthesis: X. Prevention of O-acylation during coupling with active
esters. Int. J. Pept. Prot. Res. 1969; 13: 22–27.
c