pubs.acs.org/joc
probing RNA structure and function,9-11 and exploring
Synthesis of N2-Alkyl-8-oxo-7,8-dihydro-20-
deoxyguanosine Derivatives and Effects of These
Modifications on RNA Duplex Stability
interactions between RNA and proteins or small molecules.1
Both sugar and backbone modifications have been explored
to improve nuclease stability and target identification in
antisense and siRNA approaches;12,13 however, examples
of base modification in these applications are few by com-
parison.14-16 The ability to alter the hydrophobicity and
steric properties of the major and minor groove appeared to
us as a possible means of modulating both interstrand inter-
actions as well as nucleic acid-protein interactions,7,17,18
thereby expanding the range of nucleic acid modifications in
the design of DNA and RNA therapeutics.
Arunkumar Kannan and Cynthia J. Burrows*
Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112-0850, United States
Received November 2, 2010
Inspiration for the present work came from one of the
major products of oxidative damage to the DNA, namely
8-oxo-7,8-dihydro-20-deoxyguanosine (OG).19-21 Introduc-
tion of an oxo group at C8 of the purine increases the
propensity of the purine to flip from the normal anti con-
formation to syn, where it exposes the Hoogsteen face of the
purine to base pairing. Like its parent guanine, OG(anti)
accepts cytosine as a Watson-Crick partner, while the
complementary base for OG(syn) is adenosine (Figure 1).
During the anti-syn conformational change, the N2-amino
group and the C8-oxo groups exchange positions between
the minor and major grooves (Figure 1). As a result, addition
of an alkyl or aryl group to the exocyclic amine should enable
the placement of the substituent in either groove, in a way
that will be governed by the identity of the base opposite.
OG can be synthetically incorporated into DNA and
RNA oligomers via the corresponding phosphoramidite.
While we, among others, have been studying OG and its
incorporation into oligomers, including chemical character-
ization and enzymology with DNA processing enzymes,22,23
OG is rarely studied in RNA. Thermal denaturation
studies,22,24,25 NMR studies,26 and X-ray crystallographic
N2-Alkyl analogues of 8-oxo-7,8-dihydro-20-deoxygua-
nosine (OG) were synthesized (alkyl = propyl, benzyl)
via reductive amination of the protected OG nucleoside
and incorporated into various positions of an RNA
strand. Thermal stability studies of duplexes containing
A or C opposite a single modified base revealed only
moderate destabilization. Both OG as well as its N2-alkyl
analogues can pair opposite A or C with nearly equal
stability, potentially offering a new means of modulating
RNA-protein interactions in the minor vs major grooves.
(11) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. Chem. Rev. 2010, 110, 2579–
2619.
(12) Shukla, S.; Sumaria, C. S.; Pradeepkumar, P. I. ChemMedChem
2010, 5, 328–349.
(13) Rozners, E. Curr. Org. Chem. 2006, 10, 675–692.
(14) Chiu, Y. L.; Rana, T. M. RNA 2003, 9, 1034–1048.
(15) Somoza, A.; Silverman, A.; Miller, R.; Chelliserrykattil, J.; Kool, E.
Chem.;Eur. J. 2008, 14, 7978–7987.
(16) Xia, J.; Noronha, A.; Toudjarska, I.; Li, F.; Akinc, A.; Braich, R.;
Frank-Kamenetsky, M.; Rajeev, K. G.; Egli, M.; Manoharan, M. ACS
Chem. Biol. 2006, 1, 176–183.
(17) Peacock, H.; Fostvedt, E.; Beal, P. A. ACS Chem. Biol. 2010, 5,
1115–1124.
Chemical modification of nucleosides has been a successful
strategy for antiviral,1 antimetabolite,2 antitumor,3,4 and
diagnostic agents.4 Modified nucleosides in oligomers exist
naturally due to cellular reactions on both the bases and the
sugars of DNA and RNA and have also been introduced into
oligomers synthetically. Modified nucleosides are common
in the RNA field due to applications in investigating reaction
mechanisms,5,6 imparting favorable properties on siRNAs,7,8
(18) Liu, Y.; Xu, J.; Karimiahmadabadi, M.; Zhou, C.; Chattopadhyaya,
J. J. Org. Chem. 2010, 75, 7112–7128.
(1) Duong, A.; Mousa, S. A. Drugs Today 2009, 45, 751–761.
(2) Foss, F. M. Best. Pract. Res. Clin. Haematol. 2004, 17, 573–584.
(3) Jordheim, L. P.; Dumontet, C. Biochim. Biophys. Acta, Rev. Cancer
2007, 1776, 138–159.
(19) Wood, M. L.; Esteve, A.; Morningstar, M. L.; Kuziemko, G. M.;
Essigmann, J. M. Nucleic Acids Res. 1992, 20, 6023–6032.
(20) Wang, D.; Kreutzer, D. A.; Essigmann, J. M. Mutat. Res., Fundam.
Mol. Mech. Mutagen. 1998, 400, 99–115.
(4) Kassis, A. I.; Adelstein, S. J.; Mariani, G. Q. J. Nucl. Med. 1996, 40,
301–319.
(21) Ames, B. N.; Shigenaga, M. K.; Hagen, T. M. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 7915–7922.
(5) Maydanovych, O.; Easterwood, L. M.; Cui, T.; Veliz, E. A.; Pokharel,
S.; Beal, P. A. Methods Enzymol. 2007, 424, 369–386.
(6) Suydam, I. T.; Strobel, S. A. J. Am. Chem. Soc. 2008, 130, 13639–
13648.
(7) Terrazas, M.; Kool, E. T. Nucleic Acids Res. 2009, 37, 346–353.
(8) Watts, J. K.; Deleavey, G. F.; Damha, M. J. Drug Discov. Today 2008,
13, 842–855.
(22) Burrows, C. J.; Muller, J. G.; Kornyushyna, O.; Luo, W.; Duarte, V.;
Leipold, M. D.; David, S. S. Environ. Health Perspect. 2002, 110 (Suppl 5),
713–717.
(23) Krahn, J. M.; Beard, W. A.; Miller, H.; Grollman, A. P.; Wilson,
S. H. Structure 2003, 11, 121–127.
(24) Ober, M.; Mueller, H.; Pieck, C.; Gierlich, J.; Carell, T. J. Am. Chem.
Soc. 2005, 127, 18143–18149.
(9) Rist, M. J.; Marino, J. P. Curr. Org. Chem. 2002, 6, 775–793.
(10) Hougland, J. L.; Piccirilli, J. A. Methods Enzymol. 2009, 468,
107–125.
(25) Hamm, M. L.; Billig, K. Org. Biomol. Chem. 2006, 4, 4068–4070.
(26) Kouchakdjian, M.; Bodepudi, V.; Shibutani, S.; Eisenberg, M.;
Johnson, F.; Grollman, A. P.; Patel, D. J. Biochemistry 1991, 30, 1403–1412.
720 J. Org. Chem. 2011, 76, 720–723
Published on Web 12/30/2010
DOI: 10.1021/jo102187y
r
2010 American Chemical Society