a solid or an oil that was isolated chromatographically. In the
course of purifying 2a we realized that these compounds slowly
underwent retro-aldol-like reversion to the starting materials.
Thus, complete separation and purification of each of the two
diastereomers was not achieved in any of the cases. Nonetheless,
good to excellent combined yields of diastereomers were
obtained, especially in the cases of compounds 2c-g, whose
syntheses benefited from our prior experiences optimizing the
procedure.
Treatment of the each of the isolated 1-(benzenesulfonyl)-
2-aryl-1-(phenylthio)alken-2-ols 2a-g with Et2AlCl induced
rearrangement to the corresponding 1-aryl-1-(phenylthio)alken-
2-ones (3a-g)6,7 in variable yields. We found that each case,
although based upon Trost’s general procedure, had to be
individually optimized. The ketones 3a-g were then regiose-
lectively alkylated8 with allyl bromide to give 4-aryl-4-(phe-
nylthio)alkadien-5-ones 4a-g in good to excellent yields.
Finally, each of the alkylated ketones 4a-g was treated with
Grubbs’ I catalyst for ring closing metathesis9 to give the
corresponding 2-aryl-2-(phenylthio)cycloalk-4-enone (5a-g). In
a typical procedure, 10 mol % of catalyst solution was added
to a 2-3 µM solution of ketone in CH2Cl2. After stirring at 50
°C for 24 h, another 10 mol % of catalyst solution was added
and the cyclization allowed to proceed for another 24 h.
Generation of the seven- and eight-membered ring enones (5a-
f) proceeded satisfactorily. However, the synthesis of the nine-
membered 2-phenyl-2-(phenylthio)cyclonon-4-enone (5g) gave
only trace amounts under the same conditions. Using higher
concentrations of substrate, higher molar ratios of catalyst,
higher refluxing temperatures, and even microwave radiation
failed to improve this result.
at δ 6.4-6.5 (H4, ddt). NMR indicated that some of these
dienones (6b and 6d in particular) contained the deconjugated
2-arylcyclohepta-2,5-dienones, but in quantities too small to be
isolated or purified.11
These solution-phase syntheses demonstrated gratifying ver-
satility and diversity. We therefore attempted their adaptation
to the solid phase. Following Fre´chet’s protocol,12 we derivatized
polystyrene/2% divinylbenzene beads with arylthiol functionality
at a loading of 1.65 mmol/g.13 Deprotonation to the arylthiolate
and addition of (bromomethyl)phenyl sulfone gave the solid-
supported [(arylthio)methyl]phenyl sulfone resin 8 (IR 1326 and
1151 cm-1).14,15 Unfortunately, deprotonation of this resin-bound
sulfone followed by addition of excess aryl alkenyl ketone fails
to produce polymer-bound alcohol 9, no doubt a consequence
of the reversibility of the latter process.
In conclusion, the use of [(phenylthio)methyl]phenyl sulfone
has shown versatility in short solution-phase syntheses of several
seven- and eight-membered 2-arylcycloalka-2,4-dienones. Ad-
aptation to the solid phase was not successful.
Oxidation of cycloalkenones 5a-f with m-CPBA in dichlo-
romethane at -78 °C gave the corresponding sulfoxides,10 which
were dehydrosulfenylated by reflux in CCl4 overnight to give
the final products, 2-arylcycloalka-2,4-dienones (6a-f), in good
to excellent yields. The fully conjugated cycloalka-2,4-dienones
6a-f display three 1H NMR signals with an integration of one
proton each at ca. δ 6.6-6.7 (H2, d), at δ 6.1-6.2 (H3, dt), and
Experimental Section
Representative Procedure:6 1-(Benzenesulfonyl)-2-(4-meth-
oxyphenyl)-1-(phenylsulfanyl)hex-5-en-2-ol (2e). A hexane solu-
tion of n-BuLi (2.5 M, 24.0 mL, 60.0 mmol) was added dropwise
to a solution of [(phenylsulfanyl)methyl]phenyl sulfone (14.2 g,
53.6 mmol) in THF (400 mL) at -78 °C. The mixture turned
yellowish in color and was stirred for 30 min, whereupon a hexane
solution of diethylaluminum chloride solution in hexane (1.0 M,
80.0 mL, 80.0 mmol) was added by syringe. After 5 min, a solution
of 10.2 g of 1-(4-methoxyphenyl)pent-4-en-1-one16 (1e) (53.6
mmol) in THF (50 mL) was added dropwise. After being stirred
overnight at -78 °C, the reaction was quenched with 150 mL of
(6) (a) Breslow, R.; Mohacsi, E. J. Am. Chem. Soc. 1962, 84, 684. (b)
Tanaka, K.; Matsui, S.; Kaji, A. Bull. Chem. Soc. Jpn. 1980, 53, 3619. (c)
Trost, B. M.; Ghadiri, M. R. J. Am. Chem. Soc. 1984, 106, 7260. (d) Trost,
B. M.; Mikhail, G. K. J. Am. Chem. Soc. 1987, 109, 4124. (e) Nantz, M.
H.; Radisson, X.; Fuchs, P. L. Synth. Commun. 1987, 17, 55. (f) Trost, B.
M. Bull. Chem. Soc. Jpn. 1988, 61, 107. (g) Hewkin, C. T.; Jackson, R. F.
W.; Clegg, W. Tetrahedron Lett. 1988, 29, 4889. (h) Bruckner, R.; Peiseler,
B. Tetrahedron Lett. 1988, 29, 5233. (i) Azadi-Ardakani, M.; Loftus, C.
G.; Mjalli, A. M. M.; Newton, R. F.; Roberts, S. M. J. Chem. Soc., Chem.
Commun. 1989, 1709. (j) Hewkin, C. T.; Jackson, R. F. W.; Clegg, W. J.
Chem. Soc., Perkin Trans. 1 1991, 3091. (k) Montana, J. G.; Phillipson,
N.; Taylor, R. J. K. J. Chem. Soc., Chem. Commun. 1994, 2289. (l) Finch,
H.; Mjalli, A. M. M.; Montana, J. G.; Roberts, S. M.; Taylor, R. J. K.
Tetrahedron 1996, 40, 4925. (m) Toyooka, N.; Okumura, M.; Takahata,
H. J. Org. Chem. 1999, 64, 2182.
(10) (a) Nozoe, T.; Mukai, T.; Tezuka, T. Bull. Chem. Soc. Jpn. 1961,
34, 619. (b) Trost, B. M.; Salzmann, T. N. J. Am. Chem. Soc. 1973, 95,
6840. (c) Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976,
98, 4887. (d) Trost, B. M. Chem. ReV. 1978, 78, 363. (e) Tamura, Y.; Maeda,
H.; Choi, H. D.; Ishibashi, H. Synthesis 1982, 56. (f) Katritzky, A. R.;
Saczewski, F.; Marson, C. M. J. Org. Chem. 1985, 50, 1351. (g) Brown,
R. F. C.; Coulston, K. J.; Eastwood, F. W.; Fallon, G. D. Aust. J. Chem.
1986, 39, 189. (h) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G.-Q.; Kim,
S.; Kessabi, J. Org. Lett. 1999, 1, 807.
(11) Lew, C. S. Q.; Capon, B. J. Org. Chem. 1997, 62, 5344.
(12) (a) Farral, M. J.; Frechet, J. M. J. J. Org. Chem. 1976, 41, 3877.
(b) De Smet, M. D.; Frechet, J. M. J.; Farral, M. J. Polymer 1979, 20, 675.
(c) Frechet, J. M. J. Tetrahedron 1981, 37, 663. (d) Frechet, J. M. J.; Darling,
G. D.; Itsuno, S.; Lu, P.-Z.; Vivas de Meftahi, M.; Rolls, W. A., Jr. Pure.
Appl. Chem. 1988, 60, 353.
(13) Brown, H. C. Organic Synthesis Via Boranes; John Wiley and
Sons: New York, 1975; p 258.
(14) De Smet, M. D.; Frechet, J. M. J.; Farral, M. J. J. Org. Chem. 1979,
44, 1774.
(15) Cheng, W.-C.; Lin, C.-C.; Kurth, M. J. Tetrahedron Lett. 2002, 43,
2967.
(16) (a) Marvell, E. N.; Li, T. H.-C. J. Am. Chem. Soc. 1978, 100, 883.
(b) Kozikowski, A. P.; Ames, A. Tetrahedron 1985, 41, 4821.
(7) Phillipson, N.; Anson, M. S.; Montana, J. G.; Taylor, R. J. K. J.
Chem. Soc., Perkin Trans. 1 1997, 2821.
(8) (a) Ozaki, Y.; Mochida, K.; Kim, S.-W. J. Chem. Soc., Perkin Trans
I 1989, 1219. (b) Imanishi, T.; Hirokawa, Y.; Yamashita, M.; Tanaka, T.;
Miyashita, K.; Iwata, C. Chem. Pharm. Bull. 1993, 41, 31. (c) Kunz, U.;
Krimm, S.; Fischer, T.; Kottke, T.; Stalke, D.; Christl, M. Eur. J. Org.
Chem. 1998, 2171. (d) Edwards, G. L.; Sinclair, D. J. Tetrahedron Lett.
1999, 40, 3933.
(9) (a) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc.
1996, 118, 9606. (b) Schuster, M.; Pernerstorfer, J.; Blechert, S. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1979. (c) Dias, E. L.; Nguyen, S.-B. T.;
Grubbs, R. H. J. Am. Chem. Soc. 1997, 119, 3887. (d) Peters, J.-U.; Blechert,
S. Synlett 1997, 348. (e) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54,
4413. (f) Saito, N.; Sato, Y.; Mori, M. Org. Lett. 2002, 4, 803. (g) Sasaki,
M.; Noguchi, T.; Tachibana, K. J. Org. Chem. 2002, 67, 3301.
J. Org. Chem, Vol. 71, No. 4, 2006 1737