Table 2 Reaction of 9b with carbon nucleophiles
Notes and references
z The crucial role played by the dicobalt hexacarbonyl complex in
these reactions (Scheme 3) was proved when compound 8a (devoid of
dicobalt hexacarbonyl) was treated with BF3ꢁEt2O to yield a complex
mixture of compounds.
y When molecular sieves, 4 A beads, were used, instead of powder
activated 4 A molecular sieves, the isolated yields of isolated 11 and 12
were 45% and 34%, respectively.
z Compounds 19a–f were readily obtained from 8b, by a reaction
sequence that involved: desilylation, alkylation, and cobaltation.
Entry
Nucleophile
t/min
Product
Yield (%)
70
i
30
21a
1 Reviews: J. R. Green, Eur. J. Org. Chem., 2008, 6053;
B. J. Teobald, Tetrahedron, 2002, 58, 4133; J. R. Green, Curr.
Org. Chem., 2001, 5, 809; K. M. Nicholas, Acc. Chem. Res., 1987,
20, 207.
ii
50
21b
59
2 Reviews: R. J. Ferrier and H. O. Hoberg, Adv. Carbohydr. Chem.
Biochem., 2003, 58, 55; R. J. Ferrier and O. A. Zubkov, Org.
React., 2003, 62, 569; R. J. Ferrier, Top. Curr. Chem., 2001, 215,
1535; R. J. Ferrier, Adv. Carbohydr. Chem. Biochem., 1969, 58, 199.
3 See for example: J. J. Li, in Name Reactions, Springer, Berlin,
iii
iv
20
80
21c
21d
57
93
3rd edn, 2006; L. Kurti and B. Czabo, in Strategic Applications of
¨
Named Reactions in Organic Synthesis, Elsevier Academic Press,
Burlington, 2005.
4 Nicholas reaction: D. D. Dı
Synlett, 2007, 343.
5 Ferrier (I) rearrangement: B. Fraser-Reid and J. C. Lo
Org. Chem., 2009, 13, 532; J. C. Lopez, A. M. Gomez, S. Valverde
az, J. M. Betancort and V. S. Martın,
´ ´
´
pez, Curr.
´
´
Since the formation of oxepanes seemed to be triggered by
the presence of benzyl-type substituents at O-6, it could be
eliminated with the presence of a different substituent at O-6.
Accordingly, the reaction of 6-O-triisopropylsilyl (TIPS) derivative
9b, with carbon nucleophiles (3 equiv.) in CH2Cl2 at ꢀ20 1C,
in the presence of BF3ꢁEt2O (1.2 equiv.) led, in a stereo-
controlled manner, to 3-deoxy-3-C-hex-1-enitol derivatives 21,
in moderate to good yields (Table 2).
and B. Fraser-Reid, J. Org. Chem., 1995, 60, 3851.
6 S. Amiralaei and J. R. Green, Chem. Commun., 2008, 4971.
7 E. A. Allart, S. D. R. Christie, G. J. Pritchard and M. R. J.
Elsegood, Chem. Commun., 2009, 7339; S. D. R. Christie,
R. J. Dacoile, M. R. J. Elsegood, R. Fryatt, R. C. F. Jones and
G. J. Pritchard, Chem. Commun., 2004, 2474.
´ ´
8 A. M. Gomez, C. Uriel, S. Valverde and J. C. Lopez, Org. Lett.,
2006, 8, 3187.
9 W. A. Smit, R. Caple and I. P. Smoliakova, Chem. Rev., 1994, 94,
2359.
10 F. E. McDonald, H. Y. H. Zhu and C. R. Holmquist, J. Am.
Chem. Soc., 1995, 117, 6605.
11 H. Imai, T. Oishi, T. Kikuchi and M. Hirama, Tetrahedron, 2000,
56, 8451.
12 N. V. Bovin, S. Zurabyan and A. Khorlin, Carbohydr. Res., 1981,
98, 25.
The reaction of 9b with allyltrimethylsilane furnished
3-C-branched derivative 21a (Table 2, entry (i)). Likewise,
the reaction of 9b with N-methylindole, N-methylpyrrole, and
furan yielded compounds 21b, 21c, and 21d, respectively
(Table 2, entries ii, iii and iv, respectively).
These transformations were completely regioselective,
following a pattern commonly observed for allylic Nicholas
cations, in which the nucleophile reacts at the terminus remote
from the organometallic substituent,17 rather than a Ferrier-
type behavior, where the nucleophile normally enters at C-1.2
The configuration at C-3 in compounds 21a–d could be
established based on the observed large J3,4 coupling constants
in 1H NMR. The stereochemistry of the C-3 branch is the
result of a preferred anti approach of the incoming nucleophile
with respect to the substituent at C-4.18
13 P. Rollin and P. Sinay, Carbohydr. Res., 1981, 98, 139.
¨
14 For related 1,6-hydride transfers on glycals, see: M. A. Brimble
and T. J. Brenstrum, J. Chem. Soc., Perkin Trans. 1, 2001, 1612;
M. A. Brimble and T. J. Brenstrum, Tetrahedron Lett., 2000, 41,
1107; A. L. J. Byerley, A. M. Kenwright, C. W. Lehmann,
J. A. Hugh MacBride and P. G. Steel, J. Org. Chem., 1998, 93, 163.
15 For
D. D. Dı
2006, 12, 2593, and references cited therein.
a
related 1,5-hydride transfer to Nicholas cations, see:
´
az, M. A. Ramırez and V. S. Martın, Chem.–Eur. J.,
´
´
16 G. S. Mikaelian, A. S. Gybin, W. A. Smit and R. Caple,
Tetrahedron Lett., 1985, 26, 1269.
17 (a) E. Alvaro, M. C. de la Torre and M. A. Sierra, Chem.–Eur. J.,
2006, 12, 6403; (b) E. Alvaro, M. C. de la Torre and M. A. Sierra,
Chem. Commun., 2006, 985; (c) S. Padmanabhan and
K. M. Nicholas, Tetrahedron Lett., 1982, 23, 2555.
In summary, novel Nicholas–Ferrier pyranosidic cations,
with benzyl-type substituents at O-6, undergo a synthetically
useful, stereocontrolled, transformation19 to substituted
oxepanes,20 which involves 1,6 hydride shift/cyclization/ring
opening. Work is currently underway with derivatives of
type 9 to further explore its reactivity and potential synthetic
applications.
18 (a) W. Damm, B. Giese, J. Hartung, T. Hasskerl, K. Houk,
O. Huter and H. Zipse, J. Am. Chem. Soc., 1992, 114, 4067;
mez, S. Mantecon, S. Valverde and J. C. Lopez,
´ ´ ´
¨
(b) A. M. Go
J. Org. Chem., 1997, 62, 6612.
19 A related transformation involving a 1,5-hydride shift/cyclization
process has recently appeared: K. M. McQuaid and D. Sames,
J. Am. Chem. Soc., 2009, 131, 402.
20 Reviews: (a) V. Piccialli, Synthesis, 2007, 2585; (b) M. C. Elliott,
J. Chem. Soc., Perkin Trans. 1, 2002, 2301. See also: N. V. Ganesh,
S. Raghothama, R. Sonti and N. Jayaraman, J. Org. Chem., 2010,
75, 215, and references cited therein.
We acknowledge the support of Ministerio de Ciencia e
´
Innovacion (Grants CTQ-2006-C03, and CTQ2009-10343),
and Comunidad de Madrid (Grant S2009/PPQ-1752). F.L. is
´
grateful to Consejo Superior de Investigaciones Cientıficas
(CSIC) for a predoctoral scholarship (JAE program).
ꢂc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 6159–6161 | 6161