Chem. Mater. 2011, 23, 765–767 765
DOI:10.1021/cm1020228
energy levels, good film-forming property, and high hole
mobility in polymer blend are important prerequisites.5
An extended rigid π-conjugation of the polymer back-
bone will facilitate intermolecular interaction between
polymer chains and increase charge mobility of the poly-
mers.6 Previously, several ladder-type copolymers have
been investigated for achieving efficient PSCs.7 Poly-
(thiophene-phenylene-thiophene)s, a new type of donor,
have demonstrated impressive hole mobilities up to 10-3 cm2
V-1 s-1.8 Cyclopentadithiophene-based polymers repre-
sent another type of material for highly efficient OPVs.9
When the carbon atoms in the 4-position of the cyclo-
pentadithiophene unit are replaced by silicon atoms,
enhanced interchain packing endows the polymer with a
PCE as high as 5.9%.10 Specifically, the introduction of
silicon atoms into the polymer’s backbone has been
proven to be able to bring several desirable characteristics
into polymers, such as lower HOMO and LUMO levels,
improved packing ability, and higher charge mobility.11
Considering the above issues, we have designed and
synthesized two new low bandgap copolymers that con-
tain a thiophene-phenylene-thiophene fused ring in
which the linked carbon atoms are replaced by silicon
atoms.12 A facile synthetic method was developed to syn-
thesize the benzobis(silolothiophene) donor unit in high
yield. The structures of the new copolymers are shown in
Scheme 1. The introduction of silicon atoms was expected
Benzobis(silolothiophene)-Based Low Bandgap
Polymers for Efficient Polymer Solar Cells†
Jie-Yu Wang, Steven K. Hau, Hin-Lap Yip,
Joshua A. Davies, Kung-Shih Chen, Yong Zhang,
Ying Sun, and Alex K.-Y. Jen*
Department of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195
Received July 20, 2010
Revised Manuscript Received August 28, 2010
Polymer solar cells (PSCs) have attracted great atten-
tion for applications in renewable energy due to their
potential for low cost, light weight, and large-area pro-
cessability.1 To achieve high power conversion efficiency
(PCE), bulk heterojunction devices containing polymer
donors and fullerene-derived acceptors have been used
and represent the most efficient PSC structure.2 In the
past decade, many low band gap conjugated polymers
have been exploited to enhance light absorption.3 Among
them, benzodithiophene-based polymers have shown
high PCE of over 7%, which shows great potential for
commercialization.4
To achieve high performance PSC, conjugated polymers
with broad and strong absorption, suitable HOMO-LUMO
† Accepted as part of the “Special Issue on π-Functional Materials 2011”.
(1) (a) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J.
Science 1995, 270, 1789. (b) Kim, J. Y.; Lee, K.; Coates, N. E.;
Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J. Science 2007,
317, 222. (c) Bradec, J.; Sariciftci, N. S.; Hummelen, J. C. Adv.
Funct. Mater. 2001, 11, 15. (d) Coakley, K. M.; McGehee, M. D.
(6) Xiao, S.; Stuart, A. C.; Liu, S.; Zhou, H.; You, W. Adv. Funct.
Mater. 2010, 20, 635.
(7) (a) Zheng, Q.; Jung, B. J.; Sun, J.; Katz, H. E. J. Am. Chem. Soc.
2010, 132, 5394. (b) Lu, J.; Liang, F.; Drolet, N.; Ding, J.; Tao, Y.;
Movileanu, R. Chem. Commun. 2008, 5315. (c) Tsai, J.-H.; Chueh,
C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C.
Macromolecules 2009, 42, 1897. (d) Wu, J.-S.; Cheng, Y.-J.;
Dubosc, M.; Hsieh, C.-H.; Chang, C.-Y.; Hsu, C.-S. Chem. Commun.
2010, 3259.
(8) (a) Chan, S.-H.; Chen, C.-P.; Chao, T.-C.; Ting, C.; Lin, C.-S.; Ko,
B.-T. Macromolecules 2008, 41, 5519. (b) Chen, C.-P.; Chan, S.-H.;
Chao, T.-C.; Ting, C.; Ko, B.-T. J. Am. Chem. Soc. 2008, 130,
12828. (c) Yu, C.-Y.; Chen, C.-P.; Chan, S.-H.; Hwang, G.-W.;
Ting, C. Chem. Mater. 2009, 21, 3262. (d) Chan, S.-H.; Hsiao,
Y.-S.; Hung, L.-I; Hwang, G.-W.; Chen, H.-L.; Ting, C.; Chen,
C.-P. Macromolecules 2010, 43, 3399.
€
Chem. Mater. 2004, 16, 4533. (e) Gunes, S.; Neugebauer, H.;
Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
ꢀ
(2) (a) Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008,
47, 58. (b) Chen, J. W.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709.
€
(c) Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.;
Waldauf, C.; Heeger, A. J.; Brabec, C. J. Adv. Mater. 2006, 18, 789.
(3) (a) Kroon, R.; Lenes, M.; Hummelen, J. C.; Blom, P. W. M.; De
Boer, B. Polym. Rev. 2008, 48, 531. (b) Cheng, Y.-J.; Yang, S.-H.;
Hsu, C.-S. Chem. Rev. 2009, 109, 5868. (c) Huo, L.; Hou, J.; Zhang,
S.; Chen, H.-Y.; Yang, Y. Angew. Chem., Int. Ed. 2010, 49, 1500.
(d) Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K.; Acton, O.;
Zhang, Y.; Luo, J.; Jen, A. K.-Y. J. Am. Chem. Soc. 2009, 131,
13886. (e) Zhang, Y.; Hau, S. K.; Yip, H.-L.; Sun, Y.; Acton, O.;
Jen, A. K.-Y. Chem. Mater. 2010, 22, 2696. (f) Zou, Y.; Najari, A.;
(9) (a) Mhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.;
Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884. (b) Peet, J.;
Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.;
Bazan, G. C. Nat. Mater. 2007, 6, 497.
ꢀ
Berrouard, P.; Beaupre, S.; Aıch, B. R.; Tao, Y.; Leclerc, M. J. Am.
¨
Chem. Soc. 2010, 132, 5330. (g) Park, S. H.; Roy, A.; Beaupre, S.;
Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.;
Heeger, A. J. Nat. Photonics 2009, 3, 297. (h) Qin, R.; Li, W.; Li, C.;
Du, C.; Veit, C.; Schleiermacher, H.; Andersson, M.; Bo, Z.; Liu,
(10) (a) Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem.
Soc. 2008, 130, 16144. (b) Coffin, R. C.; Peet, J.; Rogers, J.; Bazan,
G. C. Nat. Chem. 2009, 1, 657. (c) Hoven, C. V.; Dang, X.-D.;
Coffin, R. C.; Peet, J.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater.
2010, 22, E63.
€
Z.; Inganas, O.; Wuerfel, U.; Zhang, F. J. Am. Chem. Soc. 2009,
(11) (a) Wang, E.; Wang, L.; Lan, L.; Luo, C.; Zhuang, W.; Peng, J.;
Cao, Y. Appl. Phys. Lett. 2008, 92, 033307. (b) Usta, H.; Lu, G.;
Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 9034.
(c) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner,
M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 7670. (d) Chen,
H.-Y.; Hou, J.; Hayden, A. E.; Yang, H.; Houk, K. N.; Yang, Y.
Adv. Mater. 2010, 22, 371. (e) Morana, M.; Azimi, H.; Dennler, G.;
Egelhaaf, H.-J.; Scharber, M.; Forberich, K.; Hauch, J.; Gaudiana,
R.; Waller, D.; Zhu, Z.; Hingerl, K.; van Bavel, S. S.; Loos, J.;
Brabec, C. J. Adv. Funct. Mater. 2010, 20, 1180.
131, 14612. (i) Bijleveld, J. C.; Zoombelt, A. P.; Mathijssen, S. G.;
Wienk, M. M.; Turbiez, M.; Leeuw, D.; Janssen, R. A. J. J. Am.
Chem. Soc. 2009, 131, 16616. (j) Baek, N. S.; Hau, S. K.; Yip, H.-L.;
Acton, O.; Chen, K.-S.; Jen, A. K.-Y. Chem. Mater. 2008, 20, 5734.
(4) (a) Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.;
Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649. (b) Liang, Y.;
Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv.
Mater. 2010, 22, E135.
ꢀ
(5) (a) Bredas, J.-L.; Norton, J.; Cornil, J.; Coropceanu, V. Acc. Chem.
€
Res. 2009, 42, 1691. (b) Inganas, O.; Zhang, F.; Tvingstedt, K.;
€
Andersson, L. M.; Hellstrom, S.; Andersson, M. R. Adv. Mater.
(12) Tierney, S.; Bailey, C.; Mitchell, W.; Blouin N. WO patent 2010/
031480 A1.
2010, 22, E100.
r
2010 American Chemical Society
Published on Web 09/07/2010
pubs.acs.org/cm