Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
2
benzoxyl anion. The iminyl radical A undergoes an β-
fragmentation reaction to afford the phosphorus radical B.[15]
Here, the styrene 1a can act as a radical acceptor to capture
the phosphorus radical by delivering the benzyl radical.
Subsequently, regeneration of the ground state photocatalyst
results from reduction by the benzyl radical to afford benzyl
cation immediately attacked by acetonitrile to the final benzyl
nitrilium cation intermediate C with completing the catalytic
cycle. Finally, the nitrilium cation C is attacked by the benzoxyl
anion, followed by an acyl migration, to afford the -
aminophosphinoylation product 3a through a Ritter-type
reaction.[7]
In conclusion, we have discovered a new application of
phosphorus reagent of oxime phosphonate, which was
successfully used for the intermolecular cascade radical
addition reaction of alkenes to form -aminophosphonates via
visible-light-driven N-centered iminyl radical-mediated and
redox-neutral selective C–P bond cleavage in an active
phosphorus radical route. This strategy tolerates a wide range
of alkenes. It enables the highly selective formation of various
chemical bonds in a single step.
Q.-P. Tian, S.-D. Yang, Angew. Chem., DInOtI.: E10d..1023091/C3,9C5C2,063097752H.
(b) S.-F. Zhou, D.-P. Li, K. Liu, J.-P. Zou, O. T. Asekun, J. Org.
Chem. 2015, 80, 1214. (c) Y. Gao, X. Li, W. Chen, G. Tang, Y.-
F. Zhao, J. Org. Chem. 2015, 80, 11398. (d) W. Kong, E.
Merino, C. Nevado, Angew. Chem., Int. Ed. 2014, 53, 5078.
(e) Y.-Z. Gao, X.-Q. Li, J. Xu, Y.-L. Wu, W.-Z. Chen, G. Tang, Y.-
F. Zhao, Chem. Commun. 2015, 51, 1605. (f) H.-Y. Zhang, L.-L.
Mao, B. Yang, S.-D. Yang, Chem. Commun. 2015, 51, 4101. (g)
J.-A. Li, P.-Z. Zhang, K. Liu, A. Shoberu, J.-P. Zou, W. Zhang,
Org. Lett. 2017, 19, 4704. (h) P.-Z. Zhang, L. Zhang, J.-A. Li, A.
Shoberu, J.-P. Zou, W. Zhang, Org. Lett. 2017, 19, 5537.
For selected examples, see: (a) K. Luo, W.-C. Yang, L. Wu,
Asian, J. Org. Chem. 2017, 6, 350. (b) C.-X. Li, D.-S. Tu, R. Yao,
H. Yan, C.-S. Lu, Org. Lett. 2016, 18, 4928. (c) L.-L. Liao, Y.-Y.
Gui, X.-B. Zhang, G. Shen, H.-D. Liu, W.-J. Zhou, J. Li, D.-G. Yu,
Org. Lett. 2017, 19, 3735. (d) C.-H. Wang, Y.-H. Li, S.-D. Yang,
Org. Lett. 2018, 20, 2382.
3
4
For selected examples, see: (a) M. H. Shaw, J. Twilton, D. W.
C. MacMillan, J. Org. Chem. 2016, 81, 6898. (b) K. L. Skubi, T.
R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035. (c) C. K.
Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013,
113, 5322. (d) J. Xuan, W.-J. Xiao, Angew. Chem., Int. Ed.
2012, 51, 6828. (e) J. M. R. Narayanam, C. R. J. Stephenson,
Chem. Soc. Rev. 2011, 40, 102.
5
6
T.-I. Chudakova, Y.-V. Rassuakanaya, A.-A. Sinitsa, P.-P.
Onyśko, Russ. J. Gen. Chem. 2009, 79, 195.
We are grateful for the NSFC (Nos. 21532001) and
Supported by the Open Fund of the Key Laboratory of
Functional Molecular Engineering of Guangdong Province
(2016kf04) for financial support.
For selected examples, see: (a) H. Jiang, X. An, K. Tong, T.
Zheng, Y. Zhang, S. Yu, Angew. Chem., Int. Ed. 2015, 54,
4055. (b) H.-B. Yang, S. R. Pathipati, N. Selander, ACS Catal.
2017, 7, 8441. (c) E. M. Dauncey, S. P. Morcillo, J. J. Douglas,
N. S. Sheikh, D. Leonori, Angew. Chem., Int. Ed. 2018, 57,
744. (d) X.-Y. Yu, Q.-Q. Zhao, J. Chen, J.-R. Chen, W.-J. Xiao,
Angew. Chem., Int. Ed. 2018, 57, 15505. (e) X.-Y. Yu, J.-R.
Chen, P.-Z. Wang, M.-N. Yang, D. Liang, W.-J. Xiao, Angew.
Chem., Int. Ed. 2018, 57, 738.
(a) J.-J. Ritter, P.-P. Minieri, J. Am. Chem. Soc. 1948, 70, 4045.
(b) A. G. Martínez, R. M. Alvarez, E. T. Vilar, A. G. Fraile, M.
Hanack, L. R. Subramanian, Tetrahedron Lett. 1989, 30, 581.
(c) K. Kiyokawa, T. Watanabe, L. Fra, T. Kojima, S. Minakata,
J. Org. Chem. 2017, 82, 11711. (d) C. Feng, Y. Li, X. Sheng, L.
Pan, Q. Liu, Org. Lett., 2018, 20, 6449.
Conflicts of interest
There are no conflicts to declare.
7
Notes and references
1
For selected examples, see: (a) T. Koike, M. Akita, Acc. Chem.
Res. 2016, 49, 1937. (b) G.-Y. Yin, X. Mu, G.-S. Liu, Acc. Chem.
Res. 2016, 49, 2413. (c) T. Koike, M. Akita, Chem. 2018, 4,
409. (d) X.-W. Lan, N.-X. Wang, Y. Xing, Eur. J. Org. Chem.
2017, 39, 5821. (e) S. R. Chemler, M. T. Bovino, ACS Catal.
2013, 3, 1076. (f) Q. Wei, J.-R. Chen, X.-Q. Hu, X.-C. Yang, B.
Lu, W.-J. Xiao, Org. Lett. 2015, 17, 4464. (g) R. Sakae, K.
Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 6460. (h) Q.-
X. Qin, Y.-Y. Han, Y.-Y. Jiao, S.-Y. Yu, Org. Lett. 2017, 19, 2909.
(i) K. Muniz, L. Barreiro, R. M. Romero, C. Martinez, J. Am.
Chem. Soc. 2017, 139, 4354. (j) Y. Cheng, C. Muck-
Lichtenfeld, A. Studer, J. Am. Chem. Soc. 2018, 140, 6221. (k)
J.-J. Yu, Z. Wu, C. Zhu, Angew. Chem., Int. Ed. 2018, 57,
17156. (l) J. Hou, A. Ee, H. Cao, H.-W. Ong, J.-H. Xu, J. Wu,
Angew. Chem., Int. Ed. 2018, 57, 17220. (m) E. D. McCoy, T.
Feo, T. A. Harvey, R. O. Prum, Nat. Commun. 2018, 9, 1. (n) K.
M. Nakafuku, S. C. Fosu, D. A. Nagib, J. Am. Chem. Soc. 2018,
140, 11202. (o) A. Barthelemy, B. Tuccio, E. Magnier, G.
Dagousset, Angew. Chem., Int. Ed. 2018, 57, 13790. (p) S. Jin,
O. V. Larionov, Chem. 2018, 4, 1205. (q) N. Otomura, Y.
Okugawa, K. Hirano, M. Miura, Org. Lett. 2017, 19, 4802. (r)
N. Otomura, Y. Okugawa, K. Hirano, M. Miura, Synthesis
2018, 50, 3402. (s) N. Otomura, K. Hirano, M. Miura, Org.
Lett. 2018, 20, 7965. (t) Y. Yuan, Y. Chen, S. Tang, Z. Huang, A.
Lei, Sci. Adv. 2018, 4, DOI: 10.1126/sciadv.aat5312. (u) L.
Zhang, G. Zhang, P. Wang, Y. Li, A. Lei, Org. Lett. 2018, 20,
7396. (v) Y. Yuan, Y. Cao, Y. Lin, Y. Li, Z. Huang, A. Lei, ACS
Catal., 2018, 8, 10871.
8
9
F. Palacios, C. Alonso, M. de Los Santos J, Chem. Rev. 2005,
105, 899.
J. G. Allen, F. R. Arthenton, M. J. Hall, C. H. Hassall, S. W.
Holmes, R. W. Lambert, L. J. Nisbet, P. S. Ringrose, Nature.
1978, 272, 56.
10 (a) W. W. Smith, P. A. Bartlett, J. Am. Chem. Soc. 1998, 120,
4622. (b) M. C. Allen, W. Fuhrer, B. Tuck, R. Wade, J. M.
Wood, J. Med. Chem. 1989, 32, 1652.
11 R. Hirschmann, A. B. Smith, C. M. Taylor, P. A. Benkovic, S. D.
Taylor, K. M. Yager, P. A. Sprengler, S. J. Benkovic, Science.
1994, 265, 234.
12 E. Alonso, E. Alonso, A. Solis, C. del Pozo, Synlett 2000, 0698.
13 H. Masaaki, K. Makoto, Nature. 1959, 184, 901.
14 For selected examples, see: (a) J. E. Baxter, P. R. S. Davidson,
Makromol, Chem., Rapid Commun. 1987, 8, 311. (b) W. A.
Pryor, J.-T. Gu, D. F. Church, J. Org. Chem. 1985, 50, 185. (c)
D. Weldon, S. Holland, J. C. Scaiano, J. Org. Chem. 1996, 61,
8544. (d) P. S. Engle, S.-L. He, J. T. Banks, K. U. Ingold, J.
Lusztyk, J. Org. Chem. 1997, 62, 1210. (e) T. Courant, G.
Masson, J. Org. Chem. 2016, 81, 6945.
15 A. Boto, R. Freire, R. Hernández, E. Suárez, J. Org. Chem. 1997,
62, 2975.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins