pubs.acs.org/joc
increasing attention to the development of fast and accurate
A Versatile and Practical Solvating Agent for
Enantioselective Recognition and NMR Analysis
of Protected Amines
methods for the determination of the enantiomeric compo-
sition of scalemic mixtures. The need for fast ee analysis
has propelled the introduction of efficient assays based on
chromatography,1 mass spectrometry,2 UV3 and fluores-
cence spectroscopy,4 IR thermography,5 circular dichroism,6
capillary electrophoresis,7 and biochemical methods.8 Our
laboratory has developed several UV,9 fluorescence,10 and
CD11 probes that can be used to quantify the enantiomeric
excess and amount of scalemic mixtures of a wide range of
compounds.
Daniel P. Iwaniuk and Christian Wolf*
Department of Chemistry, Georgetown University,
Washington, D.C. 20057
Received July 20, 2010
Alternatively, NMR spectroscopy provides a useful entry
to fast ee determination.12 This generally requires the use
of a chiral derivatizing agent (CDA),13 a chiral solvat-
ing agent (CSA),14 or a paramagnetic chiral shift reagent
(4) (a) James, T. D.; Sandanayake, K. R. A. S.; Shinkai, S. Nature 1995,
374, 345–347. (b) Yan, Y.; Myrick, M. L. Anal. Chem. 1999, 71, 1958–1962.
(c) Beer, G.; Rurack, K.; Daub, J. J. Chem. Soc., Chem. Commun. 2001,
1138–1139. (d) Reetz, M.; Sostmann, S. Tetrahedron 2001, 57, 2515–2520.
(e) Zhao, J.; Fyles, T. M.; James, T. D. Angew. Chem., Int. Ed. 2004, 43, 3461–
3464. (f) Pu, L. Chem. Rev. 2004, 104, 1687–1716. (g) Li, Z.-B.; Lin, J.; Qin,
Y.-C.; Pu, L. Org. Lett. 2005, 7, 3441–3444. (h) Li, Z.-B.; Lin, J.; Pu, L.
Angew. Chem., Int. Ed. 2005, 44, 1690–1693.
(5) Reetz, M. T.; Becker, M. H.; Kuhling, K. M.; Holzwarth, A. Angew.
Chem., Int. Ed. 1998, 37, 2647–2650.
(6) (a) Ding, K.; Shii, A.; Mikami, K. Angew. Chem., Int. Ed. 1999, 38,
497–501. (b) Nieto, S.; Dragna, J. M.; Anslyn, E. V. Chem.;Eur. J. 2010, 16,
227–232.
(7) Reetz, M. T.; Kuhling, Deege, A.; Hinrichs, H.; Belder, D. Angew.
Chem., Int. Ed. 2000, 39, 3891–3893.
The 3,5-dinitrobenzoyl-derived 1-naphthylethyl amide 3
is an attractive CSA for NMR analysis of protected
amines. It is readily prepared in a single step and com-
bines practical resolution of diastereomeric complexes
due to signal sharpness and effective signal separation.
Crystallographic analysis shows that 3 forms a chiral cleft
that can selectively bind one enantiomer of a substrate
through hydrogen bonding, π-π stacking, and CH/π
interactions. The enantioselective complex formation
(8) (a) Abato, P.; Seto, C. T. J. Am. Chem. Soc. 2001, 123, 9206–9207.
(b) Taran, F.; Gauchet, C.; Mohar, B.; Meunier, S.; Valleix, A.; Renard,
P. Y.; Creminon, C.; Grassi, J.; Wagner, A.; Mioskowski, C. Angew. Chem.,
Int. Ed. 2002, 41, 124–127. (c) Matsushita, M.; Yoshida, K.; Yamamoto, N.;
Wirsching, P.; Lerner, R. A.; Janda, K. D. Angew. Chem., Int. Ed. 2003, 42,
5984–5987.
(9) Mei, X.; Wolf, C. J. Am. Chem. Soc. 2006, 128, 13326–13327.
(10) (a) Mei, X.; Wolf, C. Chem. Commun. 2004, 2078–2079. (b) Mei, X.;
Wolf, C. J. Am. Chem. Soc. 2004, 126, 14736–14737. (c) Tumambac, G. E.;
Wolf, C. Org. Lett. 2005, 7, 4045–4048. (d) Wolf, C.; Liu, S.; Reinhardt, B. C.
Chem. Commun. 2006, 4242–4244. (e) Mei, X.; Wolf, C. Tetrahedron Lett.
2006, 47, 7901–7904. (f) Mei, X.; Martin, R. M.; Wolf, C. J. Org. Chem. 2006,
71, 2854–2861. (g) Liu, S.; Pestano, J. P. C.; Wolf, C. J. Org. Chem. 2008, 73,
4267–4270.
1
causes strong upfield shifts in the H NMR spectrum
even in the presence of only 5 mol % of 3.
(11) (a) Ghosn, M. W.; Wolf, C. J. Am. Chem. Soc. 2009, 131, 16360.
(b) Ghosn, M. W.; Wolf, C. Tetrahedron 2010, 66, 3989–3994.
(12) (a) Evans, M. A.; Morken, J. P. J. Am. Chem. Soc. 2002, 124, 9020–
9021. (b) Lei, X.; Liu, L.; Chen, X.; Yu, X.; Ding, L.; Zhang, A. Org. Lett.
2010, 12, 2540–2543.
The rapid advance of asymmetric synthesis and the general
availability of combinatorial techniques that can produce
large numbers of chiral compounds overnight have directed
(13) (a) Jacobus, J.; Raban, M.; Mislow, K. J. Org. Chem. 1968, 33, 1142–
1145. (b) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543–
2549. (c) Anderson, R. C.; Shapiro, M. J. J. Org. Chem. 1984, 49, 1304–1305.
(d) Takeuchi, Y.; Itoh, N.; Koizumi, T. J. Chem. Soc., Chem. Commun. 1992,
1514–1515. (e) Uccello-Barretta, G.; Bernardini, R.; Lazzaroni, R.; Salvadori,
P. J. Organomet. Chem. 2000, 598, 174–178. (f) Alexakis, A.; Chauvin, A.-S.
Tetrahedron: Asymmetry 2001, 12, 1411–1415. (g) Alexakis, A.; Chauvin, A.-S.
Tetrahedron: Asymmetry 2001, 12, 4245–4248. (h) Blazewska, K.; Gajda, T.
Tetrahedron: Asymmetry 2002, 13, 671–674. (i) Rodriguez-Escrich, S.; Popa,
D.; Jimeno, C.; Vidal-Ferran, A.; Pericas, M. A. Org. Lett. 2005, 7, 3829–3832.
(j) Chi, Y.; Peelen, T. J.; Gellman, S. H. Org. Lett. 2005, 7, 3469–3472.
(k) Reiner, T.; Naraschewski, F. N.; Eppinger, J. Tetrahedron: Asymmetry
2009, 20, 362–367. (l) Sabot, C.; Mosser, C.; Antheaume, C.; Mioskowski, C.;
Baati, R.; Wagner, A. Chem. Commun. 2009, 3410–3412.
(14) (a) Pirkle, W. H. J. Am. Chem. Soc. 1966, 88, 1837. (b) Burlingame,
T. G.; Pirkle, W. H. J. Am. Chem. Soc. 1966, 88, 5150–5155. (c) Pirkle, W. H.;
Beare, S. D. J. Am. Chem. Soc. 1969, 91, 4294. (d) Parker, D. Chem. Rev.
1991, 91, 1441–1457. (e) Wenzel, T. J.; Amonoo, E. P.; Shariff, S. S.;
Aniagyei, S. E. Tetrahedron: Asymmetry 2003, 14, 3099–3104. (f) Yang, X.;
Wang, G.; Zhong, C.; Wu, X.; Fu, E. Tetrahedron: Asymmetry 2006, 17, 916–
921. (g) Ema, T.; Tanida, D.; Sakai, T. J. Am. Chem. Soc. 2007, 129, 10591–
10596. (h) Ma, F.; Shen, X.; Ming, X.; Wang, J.; Ou-Yang, J.; Zhang, C.
Tetrahedron: Asymmetry 2008, 19, 1576–1586.
(1) (a) Gao, X.; Kagan, H. B. Chirality 1998, 10, 120–124. (b) Gennari, C.;
Ceccarelli, S.; Piarulli, U.; Montalbetti, C. A. G. N.; Jackson, R. F. W.
J. Org. Chem. 1998, 63, 5312–5313. (c) Welch, C. J.; Grau, B.; Moore, J.;
Mathre, D. J. J. Org. Chem. 2001, 66, 6836–6837. (d) Wolf, C.; Hawes, P. A.
J. Org. Chem. 2002, 67, 2727–2729. (e) Wolf, C.; Francis, C. J.; Hawes, P. A.;
Shah, M. Tetrahedron: Asymmetry 2002, 13, 1733–1741. (f) Duursma, A.;
Minnaard, A. J.; Feringa, B. L. Tetrahedron 2002, 58, 5773–5778. (g) Wolf,
C.; Fadul, Z.; Hawes, P. A.; Volpe, E. C. Tetrahedron: Asymmetry 2004, 15,
1987–1993.
(2) (a) Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G. Angew. Chem., Int. Ed.
1999, 38, 1755–1758. (b) Reetz, M. T.; Becker, M. H.; Klein, H.-W.; Stockigt,
D. Angew. Chem., Int. Ed. 1999, 38, 1758–1761. (c) Markert, C.; Pfaltz, A.
Angew. Chem., Int. Ed. 2004, 43, 2498–2500.
(3) (a) Eelkema, R.; van Delden, R. A.; Feringa, B. L. Angew. Chem., Int.
Ed. 2004, 43, 5013–5016. (b) Zhu, L.; Anslyn, E. V. J. Am. Chem. Soc. 2004,
126, 3676–3677. (c) Zhu, L.; Zhong, Z.; Anslyn, E. V. J. Am. Chem. Soc.
2005, 127, 4260–4269. (d) Folmer-Andersen, J. F.; Lynch, V. M.; Anslyn,
E. V. J. Am. Chem. Soc. 2005, 127, 7986–7987. (e) Leung, D.; Folmer-
Anderson, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2008, 130,
12318. (f) Leung, D.; Anslyn, E. V. J. Am. Chem. Soc. 2008, 130, 12328.
6724 J. Org. Chem. 2010, 75, 6724–6727
Published on Web 09/07/2010
DOI: 10.1021/jo101426a
r
2010 American Chemical Society