ChemComm
Communication
perform the direct arylation of C–H bonds without the use of a
directing group. The mechanistic studies indicate that the Cu
species performs an activation involving acid–base concepts,
which then transmetallates to Pd to deliver an aryl or heteroaryl
fragment. This methodology is efficient for a broad range of
aryl, benzyl and alkenyl bromides and chlorides reacting with
aryl and heteroaryl substrates. Ongoing studies focusing on
increasing the C–H reactivity of the copper-based system
should permit the broadening of the range of coupling partners
in this very powerful reaction sequence.
The authors are grateful to the Royal Society (University
Research Fellowship to CSJC) for financial support. We also
thank the EPSRC National Mass Spectrometry Service Centre in
Swansea for High Resolution Mass Spectrometry and Umicore
for the generous gift of Pd starting materials.
Scheme 2 Stoichiometric reactions.17
Notes and references
1 J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651.
2 Metal-Catalyzed Cross-Coupling Reactions, ed. A. de Meijere and
F. Diederich, Wiley-VCH, Weinheim, 2004.
3 (a) A. O. King, N. Okukado and E.-i. Negishi, J. Chem. Soc., Chem.
Commun., 1977, 683; (b) J. E. Milne and S. L. Buchwald, J. Am. Chem.
Soc., 2004, 126, 13028; (c) J. K. Stille, Angew. Chem., Int. Ed. Engl.,
1986, 25, 508; (d) P. Espinet and A. M. Echavarren, Angew. Chem., Int.
Ed., 2004, 43, 4704; (e) N. Miyaura and A. Suzuki, Chem. Rev., 1995,
95, 2457; ( f ) A. Suzuki, Angew. Chem., Int. Ed., 2011, 50, 6722;
(g) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467; (h) M. S. Kharasch and C. F. Fuchs, J. Am. Chem. Soc.,
1943, 65, 504; (i) M. Yamamura, I. Moritani and S.-I. Murahashi,
J. Organomet. Chem., 1975, 91, C39.
Scheme 3 Proposed mechanism.
4 (a) L.-C. Campeau and and K. Fagnou, Chem. Commun., 2006, 1253;
(b) M. Lafrance, C. N. Rowley, T. K. Wo and and K. Fagnou, J. Am.
Chem. Soc., 2006, 128, 8754; (c) M. Lafrance and K. Fagnou, J. Am.
Chem. Soc., 2006, 128, 16496; (d) L. Ackermann and S. Fenner, Chem.
Commun., 2011, 47, 430; (e) L. Ackermann, A. Althammer and
S. Fenner, Angew. Chem., Int. Ed., 2009, 48, 201.
substrates such as 1,4-disubstituted-1,2,3-triazole (7t) is also
achieved in good isolated yield (78%) using 1 mol% of Pd and
10 mol% of the copper co-catalyst.
In order to better understand the role played by each metal-
complex in the transformation, stoichiometric reactions were
carried out (Scheme 2).16 [Cu(C6F5)(IPr)] 8 was obtained quan-
titatively by the reaction between [Cu(OH)(IPr)] 1 and penta-
fluorobenzene via C–H activation.17 This possible intermediate
species 8 was reacted with [Pd(Cl)(cin)(SIPr)] 2 in the presence
of 4-chlorotoluene and CsOH. This led to the concomitant
formation of [Cu(Cl)(IPr)] 3 and of the expected coupling
product.14
From these observations a proposed catalytic cycle is
depicted in Scheme 3. On the copper side of this dual catalytic
cycle (left), the first step consists of the in situ formation of the
hydroxide [Cu(OH)(NHC)] B from the chloride [Cu(Cl)(NHC)] A
in a reaction involving CsOH. The following step consists of the
C–H activation of the aryl or heteroaryl via an acid–base
reaction, producing [Cu(Ar/Het)(NHC)] C after formation of
H2O. At this stage the transmetallation with the Ar0–Pd inter-
mediate D (obtained from oxidative addition of the aryl halide
to Pd(0)) occurs, leading concomitantly to the regeneration of
[Cu(Cl)(NHC)] A and to the formation of the Ar/Het-Pd-Ar0
¨
5 For reviews, see (a) J. Wencel-Delord, T. Droge, F. Liu and F. Glorius,
Chem. Soc. Rev., 2011, 40, 4740; (b) O. Daugulis, Top. Curr. Chem.,
2010, 292, 57; (c) E. M. Beck and M. J. Gaunt, Top. Curr. Chem., 2010,
292, 85; (d) G. P. McGlacken and L. M. Bateman, Chem. Soc. Rev.,
2009, 38, 2447.
6 (a) D. A. Colby, R. G. Bergman and J. A. Ellman, Chem. Rev., 2010,
110, 624; (b) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147.
7 G. Rousseau and B. Breit, Angew. Chem., Int. Ed., 2011, 50, 2450.
8 Example of Pd/Cu systems for direct arylation of heterocycles:
A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie,
K. Osakada, M. Kawamoto and T. Ikeda, J. Am. Chem. Soc., 2003,
125, 1700.
9 J. Huang, J. Chan, Y. Chen, C. J. Borths, K. D. Baucom, R. D. Larsen
and M. M. Faul, J. Am. Chem. Soc., 2010, 132, 3674.
10 (a) G. C. Fortman, A. M. Z. Slawin and S. P. Nolan, Organometallics,
2010, 29, 3966; (b) F. Lazreg, A. M. Z. Slawin and C. S. J. Cazin,
Organometallics, 2012, 31, 7969; (c) S. Gaillard, C. S. J. Cazin and
S. P. Nolan, Acc. Chem. Res., 2012, 45, 778.
11 M. R. L. Furst and C. S. J. Cazin, Chem. Commun., 2010, 46, 6924.
12 N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott and
S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101.
13 C. A. Citadelle, E. Le Nouy, F. Bisaro, A. M. Z. Slawin and
C. S. J. Cazin, Dalton Trans., 2010, 39, 4489.
14 See ESI† for more details.
intermediate, which can release the coupling product after 15 A. Chartoire, M. Lesieur, L. Falivene, A. M. Z. Slawin, L. Cavallo,
C. S. J. Cazin and S. P. Nolan, Chem. – Eur. J., 2012, 18, 4517.
16 N. M. Scott and S. P. Nolan, Eur. J. Inorg. Chem., 2005, 1815.
17 The reaction involving 1 was also successfully carried out in toluene,
reductive elimination and regenerate the Pd(0) catalyst.
In conclusion, a dual metal system involving [Cu(Cl)(NHC)]
and [Pd(Cl)(cin)(NHC)] has been employed to very effectively
but requires a longer reaction time.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 8927--8929 | 8929