ACS Catalysis
Research Article
Climate Change (IPCC), Cambridge University Press: New York,
2005.
(2) Olah, G. A.; Goeppert, A.; Surya Prakash, G. K. J. Org. Chem.
CONCLUSION
■
Ambiphilic species reported in this study all show the ability to
hydroborate catalytically CO2 to CH3OBR2 derivatives using
catecholborane and BH3·SMe2. However, in the presence of
catecholborane, all species undergo transformations to generate
respectively 1b·CH2O or 2b·CH2O, which are believed to be
the active catalysts in the latter reaction. Although the exact
mechanism for such transformation is unknown, derivatives of
1b and 2b seem to be the favored species in such system. The
latter reaction also puts in evidence the importance of possible
redistribution occurring in such systems with the B−O bonds
being quite kinetically labile. As it was demonstrated by using
1b·13CH2O and 2b·13CH2O as catalysts, the interaction
between the formaldehyde and the phosphine−borane moiety
seems to remain intact throughout catalysis. DFT modeling of
possible transition states show that the ambiphilic activation
remains possible, as it was proposed for species 1b, but this
time one oxygen atom, either from the formaldehyde or the
catechol moieties, acts as Lewis base to activate the reducing
agent, whereas the CO2 is activated either by one borane or by
hydrogen bonding with one hydrogen of the formaldehyde
adduct. Species 2b·CH2O was shown to be the best catalyst at
room temperature reported for this system, obtaining TOF of
228 h−1. Although it represents a much harder challenge, we are
currently interested in using such concept for the hydro-
genation of carbon dioxide.
2009, 74, 487−498.
(3) Beyond Oil and Gas: The Methanol Economy; Olah, G. A., Alain
Goeppert, G. K.; Prakash, S., Eds.; Wiley-VCH: Weinheim, 2006.
(4) (a) Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009,
131, 14168−14169. (b) Federsel, C.; Jackstell, R.; Beller, M. Angew.
Chem., Int. Ed. 2010, 49, 6254−6257. (c) Schaub, T.; Paciello, R. A.
Angew. Chem., Int. Ed. 2011, 50, 7278−7282.
(5) (a) Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128,
12362−12363. (b) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn,
R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem.,
Int. Ed. 2010, 49, 9777−9780. (c) Langer, R.; Diskin-Posner, Y.;
Leitus, G. W.; Shimon, L. J.; Ben-David, Y.; Milstein, D. Angew. Chem.,
Int. Ed. 2011, 50, 9948−9952. (d) Schmeier, T. J.; Dobereiner, G. E.;
Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274−9277.
́
(e) Park, S.; Bezier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134,
11404−11407. (f) Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3,
2412−2416. (g) Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J.
C. J. Am. Chem. Soc. 2013, 135, 11533−11536. (h) Zhang, L.; Cheng,
J.; Hou, Z. Chem. Commun. 2013, 49, 4782−4784.
(6) (a) Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Angew. Chem., Int.
Ed. 2012, 51, 1671−1674. (b) Bontemps, S.; Sabo-Etienne, S. Angew.
Chem., Int. Ed. 2013, 52, 10253−10255. (c) Bontemps, S.; Vendier, L.;
Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419−4425.
(d) Metsanen, T. T.; Oestreich, M. Organometallics 2015, 34, 543−
̈
546.
(7) (a) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am.
Chem. Soc. 2010, 132, 8872−8873. (b) Balaraman, E.; Gunanathan, C.;
Zhang, J.; Shimon, L. J. W.; Milstein, D. Nature Chem 2011, 3, 609 −
614. (c) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133,
18122−18125. (d) Wesselbaum, S.; von Stein, T.; Klankermayer, J.;
Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499−7502.
(8) (a) Matsuo, T.; Kawaguchi, H. J. Am. Chem. Soc. 2006, 128,
ASSOCIATED CONTENT
■
S
* Supporting Information
The following file is available free of charge on the ACS
́
12362−12363. (b) Park, S.; Bezier, D.; Brookhart, M. J. Am. Chem. Soc.
Detailed experimental procedures and additional DFT
information (other calculated reaction pathways, Carte-
sian coordinates, free enthalpies, and energies) (PDF)
2012, 134, 11404−11407. (c) Mitton, S. J.; Turculet, L. Chem. - Eur. J.
2012, 48, 15258−15262. (d) Berkefeld, A.; Piers, W. E.; Parvez, M.;
Castro, L.; Maron, L.; Eisenstein, O. Chem. Sci. 2013, 4, 2152−2162.
(9) LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem. 2014, 126,
808−811.
AUTHOR INFORMATION
■
(10) (a) Laitar, D. S.; Muller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005,
̈
Corresponding Authors
127, 17196−17197. (b) Kleeberg, C.; Cheung, M. S.; Lin, Z.; Marder,
T. B. J. Am. Chem. Soc. 2011, 133, 19060−19063. (c) Zhao, H.; Lin, Z.;
Marder, T. B. J. Am. Chem. Soc. 2006, 126, 15637−15643.
(11) (a) Khandelwal, M.; Wehmschulte, R. J. Angew. Chem., Int. Ed.
2012, 51, 7323−7326. (b) Wehmschulte, R. J.; Saleh, M.; Powell, D. R.
Organometallics 2013, 32, 6812−6819.
04. Tel.: 33 (0)5 61 55 68 03 (G.B.).
Author Contributions
(12) Schafer, A.; Saak, W.; Haase, D.; Muller, T. Angew. Chem., Int.
∥R.D. and M.-A.L. contributed equally to this work.
̈
̈
Ed. 2012, 51, 2981−2984.
Notes
(13) (a) Momming, C.; Otten, M.; Kehr, E. G.; Frohlich, R.;
̈
̈
The authors declare no competing financial interest.
Grimme, S.; Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2009, 48,
6643−6646. (b) Appelt, C.; Westenberg, H.; Bertini, F.; Ehlers, A. W.;
Slootweg, J. C.; Lammertsma, K.; Uhl, W. Angew. Chem., Int. Ed. 2011,
50, 3925−3928. (c) Boudreau, J.; Courtemanche, M.-A.; Fontaine, F.-
G. Chem. Commun. 2011, 47, 11131−11133. (d) Peuser, I.; Neu, R. C.;
ACKNOWLEDGMENTS
■
This work was supported by the National Sciences and
Engineering Research Council of Canada (NSERC, Canada)
and the Centre de Catalyse et Chimie Verte (Quebec). M.-A.
C., M.-A. L, and N.B. would like to thank NSERC and FQRNT
for scholarships. The Centre National de la Recherche
Zhao, X.; Ulrich, M.; Schirmer, B.; Tannert, J. A.; Kehr, G.; Frohlich,
̈
R.; Grimme, S.; Erker, G.; Stephan, D. W. Chem. - Eur. J. 2011, 17,
9640−9650. (e) Hounjet, L. J.; Caputo, C. B.; Stephan, D. W. Angew.
Chem., Int. Ed. 2012, 51, 4714 −4717. (f) Takeuchi, K.; Stephan, D. W.
Chem. Commun. 2012, 48, 11304−11306. (g) Theuergarten, E.;
́
Scientifique (CNRS), the Universite Paul Sabatier (UPS),
Schlosser, J.; Schluns, D.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.;
̈
̈
and French MESR (Ph.D. grant to R.D.) are acknowledged for
financial support of this work. We would like to thank R.
Nadeau for the design of the TOC graphic.
Tamm, M. Dalton Trans. 2012, 41, 9101−9110. (h) Lu, Z.; Liu, Y. J.;
Wang, Y.; Lin, J.; Li, Z. H.; Wang, H. Organometallics 2013, 32, 6753−
6758. (i) Barry, B. M.; Dickie, D. A.; Murphy, L. J.; Clyburne, J. A. C.;
Kemp, R. A. Inorg. Chem. 2013, 52, 8312−8314.
REFERENCES
(14) (a) Ashley, A. E.; Thompson, A. L.; O’Hare, D. Angew. Chem.,
■
(1) Carbon Dioxide Capture and Storage; Metz, B., Davidson, O., de
Coninck, H., Loos, M., Meyer, L., Eds.; Intergovernmental Panel on
Int. Ed. 2009, 48, 9839−9843. (b) Men
́
ard, G.; Stephan, D. W. J. Am.
Chem. Soc. 2010, 132, 1796−1797. (c) Men
́
ard, G.; Stephan, D. W. J.
2519
ACS Catal. 2015, 5, 2513−2520