K. Ramesh et al. / Tetrahedron Letters 53 (2012) 1126–1129
1129
776; (d) Kalinski, C.; Lemoine, H.; Schmidt, J.; Burdack, C.; Kolb, J.; Umkehrer,
M.; Ross, G. Synlett 2008, 4007.
26. Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Siva Kumar, K. L. N.; Shiva Shanker,
K.; Prasad, R. B. N.; Sai Prasad, P. S. J. Mol. Catal. A: Chem. 2011, 345, 96.
3. (a) Ugi, I. Pure Appl. Chem. 2001, 73, 187. and references cited therein; (b)For a
monograph, see: Multicomponent Reactions; Zhu, J., Bienayme, H., Eds.; Wiley-
VCH: Weinheim, Germany, 2005; (c) Domling, A. Chem. Rev. 2006, 106, 17; (d)
D’Souza, D. M.; Mueller, T. J. J. Chem. Soc. Rev. 2007, 36, 3169; (e) Cariou, C. C. A.;
Clarkson, G. J.; Shipman, M. J. Org. Chem. 2008, 73, 9762.
4. (a) Koike, H.; Konse, T.; Sada, T.; Ikeda, T.; Hyogo, A.; Hinman, D.; Saito, H.;
Yanagisawa Ann. Rep. Sankyo Res. Lab. 2003, 55, 1; (b) Abrahams, S. L.; Hazen, R.
J.; Batson, A. G.; Phillips, A. P. J. Pharmacol. Exp. Ther. 1989, 249, 359; (c) Leister,
C.; Wang, Y.; Zhao, Z.; Lindsley, C. W. Org. Lett. 2004, 6, 1453.
5. Samai, S.; Nandi, G. C.; Singh, P.; Singh, M. S. Tetrahedron 2009, 65, 10155.
6. Sharma, G. V. M.; Jyothi, Y.; Lakshmi, P. S. Synth. Commun. 2006, 36, 2991.
7. Sharma, S. D.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216.
8. Kantevari, S.; Vuppalapati, S. V. N.; Biradar, D. O.; Nagarapu, L. J. Mol. Catal. A:
Chem. 2007, 266, 109.
9. Sadeghi, B.; Mirjalili, B. B. F.; Hashemi, M. M. Tetrahedron Lett. 2008, 49, 2575.
10. Nagarapu, L.; Apuri, S.; Kantevari, S. J. Mol. Catal. A: Chem. 2007, 266, 104.
11. Heravi, M. M.; Derikvand, F.; Bamoharram, F. F. J. Mol. Catal. A: Chem. 2007, 263,
112.
12. Balalaei, S.; Arabanian, A. Green Chem. 2000, 2, 274.
13. Karimi, A. R.; Alimohammadi, Z.; Azizian, J.; Mohammadi, A. A.; Mohmm
adizadeh, M. R. Catal. Commun. 2006, 7, 728.
27. General procedure for the synthesis of bio glycerol-based carbon catalyst: A
mixture of glycerol (10 g) and concentrated sulfuric acid (30 g) was heated at
180 °C for 20 min, facilitating in situ partial carbonization and sulfonation. The
reaction mixture was allowed to remain at that temperature for about 20 min
(until foaming ceased) resulting in a polycyclic aromatic carbon product. The
compound was cooled to ambient temperature and washed with hot water
until the washings indicated a neutral pH value. The partially crystalline
product was filtered and dried till it was moisture-free to get bio glycerol-
based carbon catalyst (4.65 g).
28. (a) Murthy, S. N.; Madhav, B.; Kumar, A. V.; Rao, K. R.; Nageswar, Y. V. D. Helv.
Chim. Acta 2009, 92, 2118; (b) Murthy, S. N.; Madhav, B.; Kumar, A. V.; Rao, K.
R.; Nageswar, Y. V. D. Tetrahedron 2009, 65, 5251; (c) Madhav, B.; Murthy, S. N.;
Reddy, V. P.; Rao, K. R.; Nageswar, Y. V. D. Tetrahedron Lett. 2009, 50, 6025; (d)
Murthy, S. N.; Madhav, B.; Reddy, V. P.; Nageswar, Y. V. D. Tetrahedron Lett.
2010, 51, 3649; (e) Shankar, J.; Karnakar, K.; Srinivas, B.; Nageswar, Y. V. D.
Tetrahedron Lett. 2010, 51, 3938; (f) Ramesh, K.; Murthy, S. N.; Nageswar, Y. V.
D. Tetrahedron Lett. 2011, 52, 2362; (g) Anil Kumar, B. S. P.; Madhav, B.; Harsha
Vardhan Reddy, K.; Nageswar, Y. V. D. Tetrahedron Lett. 2011, 52, 2862.
29. General procedure for the synthesis of 2,4,5-substituted imidazole derivatives: To a
stirred solution of acetonitrile (10 mL), aldehyde (1.0 mmol) and bioglycerol-
based carbon catalyst (10 wt %) were added and stirred for 10 min. To this
ammonium acetate (2.0 mmol) followed by 1,2-diketone (1.0 mmol) were
added, after which the reaction mixture was heated at 50–55 °C until
completion of the reaction as indicated by TLC. The reaction mixture was
cooled to room temperature and catalyst was filtered, the solvent was removed
by rotary evaporator. The crude residue was extracted with ethyl acetate
(3 Â 10 mL). The combined organic layers were extracted with water, saturated
brine solution, and dried over anhydrous Na2SO4. The organic layers were
evaporated under reduced pressure and the resulting crude product was
purified by column chromatography by using ethyl acetate and hexane (7:3) as
eluent to give the corresponding substituted imidazole derivative in 78–85%
yield. The identity as well as purity of the product was confirmed by 1H, 13C
NMR, and mass spectra.
14. Kidwai, M.; Mothsra, P.; Bansal, V.; Somvanshi, R. K.; Ethayathulla, A. S.; Dey,
S.; Singh, T. P. J. Mol. Catal. A: Chem. 2007, 265, 177.
15. (a) Shaabani, A.; Rahmati, A. J. Mol. Catal. A: Chem. 2006, 249, 246; (b) Shaabani,
A.; Rahmati, A.; Farhangi, E.; Badri, Z. Catal. Commun. 2007, 8, 1149.
16. (a) Usyatinsky, A. Y.; Khemelnitsky, Y. L. Tetrahedron Lett. 2000, 41, 5031; (b)
Balalaie, S.; Hashemi, M. M.; Akhbari, M. Tetrahedron Lett. 2003, 44, 1709; (c)
Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.; Lindsley,
C. W. Org. Lett. 2004, 6, 1453; (d) Sparks, R. B.; Combs, A. P. Org. Lett. 2004, 6,
2473; (e) Oskooie, H. A.; Alimohammadi, Z.; Heravi, M. M. Heteroat. Chem.
2006, 17, 699; (f) Santosh, V. N.; Mohan, B. K.; Vijay, S. P.; Sidhanath, V. B.;
Satish, U. D.; Rajendra, P. P. Open Catal. J. 2010, 3, 58.
17. (a) Siddiqui, S. A.; Narkhede, U. C.; Palimkar, S. S.; Daniel, T.; Lahoti, R. J.;
Srinivasan, K. V. Tetrahedron 2005, 61, 3539; (b) Hasaninejad, A.; Zare, A.;
Shekouhy, M.; Ameri Rad, J. J. Comb. Chem. 2010, 12, 844.
30. General procedure for the synthesis of 1,2,4,5- substituted imidazole derivatives:
To
a stirred solution of acetonitrile (10 mL), aldehyde (1.0 mmol) and
18. Heravi, M. M.; Bakhtiari, K.; Oskooie, H. A.; Taheri, S. J. Mol. Catal. A: Chem.
2007, 263, 279.
19. Sangshetti, J. N.; Kokare, N. D.; Kotharkara, S. A.; Shinde, D. B. J. Chem. Sci. 2008,
5, 463.
20. (a) Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, D. K.
Angew. Chem. 2004, 116, 3015; (b) Toda, M.; Takagaki, A.; Okamura, M.; Kondo,
J. N.; Hayashi, S.; Domen, K.; Hara, M. Nature 2005, 438, 178; (c) Takagaki, A.;
Toda, M.; Okamura, M.; Kondo, J. N.; Hayashi, S.; Domen, K.; Hara, M. Catal.
Today 2006, 116, 157; (d) Zong, M. H.; Duan, Z. Q.; Lou, W. Y.; Smith, T. J.; Wu,
H. Green Chem. 2007, 9, 434.
21. Shelke, K. F.; Sapkal, S. B.; Kakade, G. K.; Shingate, B. B.; Shingare, M. S. Green
Chem. Lett. Rev. 2010, 3, 27.
22. Suresh Kumar, B.; Venu Madhav, J.; Rajitha, B.; Thirupathi Reddy, Y.; Narsimha
Reddy, P.; Crooks, P. A. Synth. Commun. 2011, 41, 662.
23. Mukhopadhyay, C.; Pradip Kumar, T.; Drew, M. G. B. Tetrahedron Lett. 2010, 51,
3944.
24. Murthy, S. N.; Madhav, B.; Nageswar, Y. V. D. Tetrahedron Lett. 2010, 51, 5252.
25. Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Sai Prasad, P. S.; Jagannadh, B.;
Prasad, R. B. N. ChemSusChem 2009, 2, 617.
bioglycerol-based carbon catalyst (10 wt %) were added and stirred for
10 min. To this ammonium acetate (1.0 mmol) and amine (1.0 mmol)
followed by 1,2-diketone (1.0 mmol) were added, after which the reaction
mixture was heated at 50–55 °C until completion of the reaction as indicated
by TLC. The reaction mixture was cooled to room temperature and catalyst was
filtered, the solvent was removed by rotary evaporator. The crude residue was
extracted with ethyl acetate (3 Â 10 mL). The combined organic layers were
extracted with water, saturated brine solution, and dried over anhydrous
Na2SO4. The organic layers were evaporated under reduced pressure and the
resulting crude product was purified by column chromatography by using
ethyl acetate and hexane (7:3) as eluent to give the corresponding substituted
imidazole derivative in 70–82% yield. The identity as well as purity of the
product was confirmed by 1H, 13C NMR, and mass spectra.
31. Spectral data of representative examples: 1-(4-fluorophenyl)-2,4,5-triphenyl-
1H-imidazole (Table 3, entry 1): 1H NMR (DMSO-d6, 300 MHz): d 7.54 (d,
J = 6.7 Hz, 1H), 7.46–7.37 (m, 2H), 7.26–7.16 (m, 10H), 7.03–6.91 (m, 6H); 13C
NMR (CDCl3/DMSO-d6, 200 MHz): d 131.0, 129.1, 128.9, 128.6, 128.2, 127.5,
126.9, 114.2.; ESI-MS (m/z): (M+H)+.