3
evaluate applications as chemical handles in drug development
and in the design and development of thiazolyl azapeptides.
In summary, we have developed an efficient one-pot four-
component ring synthesis method to access highly substituted
novel 4-hydrazinothiazoles with potential applications in drug
development. The [4+1] ring synthesis revealed interesting
Scheme 3. Deprotection of 5 following acylation to afford 6
Table 2. Diacylated 4-hydrazinothiazole derivatives 6a-c
accessed via Scheme 3
leaving group propensities of hydrazine vs amine in
a
competitive eliminative aromatization. Acylation employing
chloroacetyl chloride facilitated deprotection of hydrazono
linkage and subsequently provided yet another set of novel
diacylated molecular systems bearing the thiazole core which
may have a wider scope in the design of thiazolyl drugs and
azapeptide analogues.
Entry
R3
R4
Yield(%)
6a
C6H5
C6H5
C6H5
4-Cl C6H4
4-OCH3C6H4
C6H5
70
65
82
6b
6c
Supplementary Information
Subsequently we could establish the generality of the protocol
by using differently substituted 5 to isolate products 6a-c(Table
2) bearing two chloroacetyl substituents, one on terminal
hydrazine N and the other on mono substituted amino N at the
second position of the thiazole ring. These novel diacylated
molecular systems are currently under active investigation to
Detailed experimental procedures, characterization data of
new compounds and copies of 1H and 13CNMR spectra are
available as supporting information.
9. (a) Sreejalekshmi, K. G.;Rajasekharan, K. N. Tet.Lett.2012, 53,
3627.(b) Sreejalekshmi, K. G.; Devi, S. K. C.;Rajasekharan, K. N.
Tet.Lett.2006, 47, 6179.
.
Acknowledgments
10. Sreejalekshmi, K. G. Phosphorus, Sulfur Silicon Relat.
Elem.2010, 185, 1830.
We thank IISER,NIIST(Thiruvananthapuram), IIT-M and IIT-
B for recording spectra (NMR and MS). Research support from
IIST in the form of doctoral research fellowship for ST is highly
acknowledged.
11. (a) Manivel,P.; Khan, F. N.Phosphorus, Sulfur Silicon Relat.
Elem.2009, 184, 2910.(b) Holla, B. S.; Malini, K. V.;Rao, B. S.;
Sarojini, B. K.;Kumari, N. S. Eur. J. Med. Chem.2003, 38,313.
12. (a) Chimenti, P. ; Petzer, A.; Carradori, S.; D’Ascenzio,M.;
Silvestri, R.;Alcaro, S.;Ortuso,F.;Petzer, J. P.;Secci, D. Eur. J.
Med. Chem.2013, 66, 221.(b) Shih, M.-U.; Su, Y.-S.; Wu, C. L.
Chem. Pharm. Bull.2007, 55, 1126.
References and notes
13. Rajasekharan, K. N.; Nair, K. P.;Jenardanan, G. C. Synthesis1986,
353.
1. (a) Ramstrong, O.; Lehn, J.-M. Nat. Rev.Drug. Disc.2002, 1, 26.
( b) Hochgürtel, M.; Niesinger, R.;Kroth, H.; Piecha, D.;
Hofmann, M. W.; Krause, S.;Schaaf, O.; Nicolau, C.;Eliseev, A.
V. J. Med. Chem.2003,46, 356.(c) Sindeler, M.; Lutz,T.A.;Petrera,
M.; Wanner, K. T. J. Med. Chem.2013, 56, 1323.
14. (a) Yao, H.C.; J. Org. Chem. 1964, 29, 2959. (b) Palla, G.,
Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Tetrahedron,
42, 3649.
15. The use of unsymmetrical carbonyl compounds indicate a
possibility of cis and trans isomers in some cases as identified by
NMR spectroscopy (exemplified by 1HNMR of 5d). Details and
spectra are provided in the supporting information.
16. General procedure for the synthesis of 5a-g. To a stirred
suspension of NaOH (10mmol) in DMSO, aminoguanidine nitrate
followed by the ketone (10mmol each) was added. The mixture
was stirred for 1h at room temperature and isothiocyanate
(9mmol) was added and stirring continued for another 1h.
Subsequently α-bromoketone (9mmol) was added followed by
Et3N (10mmol), stirred for 15min. and worked up to afford solid
products which were purified by recrystallization.
2. (a) Lehn,J.-M. Chem. Eur. J.1999, 5, 2455.(b) Corbett, P.
T.;Leclaire,J.; Vial, L.; West, K. R. ;Wietor,J.-L.; Sanders,J. K.
M.; Otto, S. Chem. Rev.2006, 106, 3652.(c) Li,J.; Nowak, P.; Otto,
S. J. Am. Chem. Soc.2013, 135, 9222. (d) Clipson, A. J.;Bhat, V.
T.; McNae, I.; Caniard, A. M.;Campopiano, D. J.;Greaney, M. F.
Chem. Eur. J.2012, 18, 10562.(e) Ladame, S.Org.Biomol.
Chem.2008, 6, 219.(f) Cousins, G. R. L.;Poulsen, S. A.; Sanders,
J. K. M. Chem.Commun.1999, 1575 (g) Liu, J. Y.; West, K.
R.;Bondy, C. R.; Sanders,J. K. M. Org.Biomol. Chem.2007, 5,
778.(h) Dirksen, A.; Dirksen, S.;Hackeng, T. M.; Dawson, P. E.J.
Am. Chem. Soc.2006,128, 15602.
17. We have identified potential aurora kinase inhibitors from a
library of these novel molecules and the results of molecular
docking and cytotoxicity studies will appear elsewhere.
18. Elhabiri, M.; Albrecht-Gary,A. M. Coord. Chem. Rev.2008, 252,
1079.
3. (a) Bhat, V. T.; Canjard, A. M.;Luksch, T.;Brenk, R.;Campopiano,
D. J.;Greaney, M. F.Nat. Chem.2010, 2, 490.(b) Nguyen, R.;Huc,
I. Chem.Commun.2003, 942.
4. (a) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963-1981.
(b) Lehn,J.-M.Chem. Soc. Rev. 2007, 36, 151-60. (b) Lehn,J.-
M.Angew. Chem. Int. Ed.2013, 52, 2836-2850.
19. Denisova, A. B.;Bakulev, V. A.; Dehaen, W.;Topet, S. ;Van
Meervelt, L.;Kodess, M. I. Russian J. Org. Chem.2005,41, 584.
5. (a) Uribe-Romo, F.; Doonan, C.J.; Furukawa, H.; Oisaki, K.;
Yaghi, O.M. J. Am. Chem. Soc.2011,133, 11478-11481.(b)Bunck,
D.N.; Dichtel, W.R. J. Am. Chem. Soc.2013,135, 14952-14955. (c)
Zhou, X.-P. Wu, Y.; Li, D. J. Am. Chem. Soc.2013,135, 16062-
16065.
6. Lygaitis, R.; Getautis, V.;Grazulevicius, J.V. Chem. Soc. Rev.
2008, 37, 770-788.
7. Raue, R., Brack, A. Lange, K. Angew. Chem. Int. Ed. Engl.1991,
30, 1643-1644.
8. (a) Sengupta, S.; Smitha, S. L.; Thomas, N. E.; Santhoshkumar, T.
R.; Devi, S. K. C.; Sreejalekshmi, K. G.; Rajasekharan, K. N. Br.
J.Pharmacol.2005, 145, 1076.(b) Reji, T. F. A. F.; Devi, S. K. C.;
Thomas, K. K.;Sreejalekshmi, K. G.;Manju, S. L.;Rajasekharan,K.
N. IndianJ Chem B, 2008, 47, 1145.