I.K. Shundrina et al. / Journal of Fluorine Chemistry 130 (2009) 733–741
741
Scheme 3.
References
on an Olympus BX51 optical microscope equipped with a digital
camera.
Solubility was determined as follows: 100 mg of PI was mixed
with 900 mg of solvent at 25 8C and the mixture was mechanically
stirred for 24 h. Water uptake was determined by immersing the
polyimide film (3 cm ꢂ 1 cm ꢂ 0.01 cm) in water at 25 8C for 24 h,
which was then dried immediately by blotting with a paper towel
and subsequently weighed.
[1] S. Ando, T. Matsuura, S. Sasaki, in: G. Hougham (Ed.), Fluoropolymers 2: Proper-
ties, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 277–303.
[2] G. Hougham, G. Tesoro, J. Shaw, Macromolecules 27 (1994) 3642–3649.
[3] (a) J. Kobayashi, T. Matsuura, S. Sasaki, T. Maruno, Appl. Opt. 37 (1998) 1032–
1037;
(b) T. Matsuura, S. Ando, S. Sasaki, F. Yamamoto, Macromolecules 27 (1994)
6665–6670.
[4] (a) G. Hougham, G. Tesoro, A. Viehbeck, J.D. Chapple-Sokol, Macromolecules 29
(1996) 3453–3456;
(b) D.X. Yin, Y.F. Li, Y. Shao, X. Zhao, S.Y. Yang, L. Fan, J. Fluorine Chem. 126 (2005)
819–823;
4.2. Materials
(c) F.W. Mercer, M.T. McKenzie, High Perform. Polym. 5 (1993) 97–106;
(d) F.W. Mercer, T.D. Goodman, High Perform. Polym. 3 (1991) 297–310;
(e) R. Reuter, H. Franke, C. Feger, Appl. Opt. 27 (1988) 4565–4571.
[5] (a) A.L. Rusanov, L.G. Komarova, M.P. Prigozhina, A.A. Askadskii, S.A. Shevelev,
A.K. Shakhnes, M.D. Dutov, O.V. Serushkina, Polym. Sci. Ser. B 48 (2006) 209–212;
(b) G.S. Matvelashvili, A.L. Rusanov, V.M. Vlasov, G.V. Kazakova, O.Yu. Rogozhni-
kova, Polym. Sci. Ser. B 37 (1995) 515–518.
[6] V. Kute, S. Banerjee, J. Appl. Polym. Sci. 103 (2007) 3025–3044.
[7] S. Banerjee, M.K. Madhra, A.K. Salunke, D.K. Jaiswal, Polymer 44 (2003) 613–622.
[8] A.E. Feiring, B.C. Auman, E.R. Wonchoba, Macromolecules 26 (1993) 2779–2784.
[9] J.G. Liu, M.H. He, Z.X. Li, Z.G. Qian, F.S. Wang, S.Y. Yang, J. Polym. Sci. A Polym.
Chem. 40 (2002) 1572–1582.
[10] J.G. Liu, X.J. Zhao, L. Fan, S.Y. Yang, G.L. Wu, F.Q. Zhang, Z.B. Li, High Perform.
Polym. 18 (2006) 145–161.
[11] X.L. Wang, Y.F. Li, C.L. Gong, T. Ma, F.C. Yang, J. Fluorine Chem. 129 (2008) 56–63.
[12] K. Wang, L. Fan, J.-G. Liu, M.-S. Zhan, S.-Y. Yang, J. Appl. Polym. Sci. 107 (2008)
2126–2135.
4,40-Oxydiphthalic anhydride (ODPA) was purified by double
vacuum sublimation at 240–260 8C/5 Torr. 2,7-Diaminohexafluor-
onaphthalene (2,7-DAHFN), 2,6-diaminohexafluoronaphthalene
(2,6-DAHFN), their mixture in the ratio 3:1 (2,7 + 2,6-DAHFN),
and 2-aminoheptafluoronaphthalene weresynthesized and purified
according to the data [17]. N-methyl-2-pyrrolidone (NMP, Aldrich)
was purified by distillation over P2O5 under reduced pressure and
stored over 3E molecular sieve; residual moisture <0.02%.
N-(1,3,4,5,6,7,8-Heptafluoro-2-naphthyl)-3,4,5,6-tetrafluor-
ophthalamic acid (FNPA) and N-(1,3,4,5,6,7,8-heptafluoro-2-
naphthyl)-3,4,5,6-tetrafluorophthalimide (FNPI) were prepared
by method shown in Scheme 3.
[13] I.S. Cung, S.Y. Kim, Macromolecules 33 (2000) 3190–3193.
[14] W. Cummings, E.R. Lynch, GB patent 1,077,243 (1967).
[15] G. Hougham, G. Tesoro, J. Shaw, Polym. Mater. Sci. Eng. (1989) 369–377.
[16] S. Ando, T. Matsuura, S. Sasaki, Macromolecules 25 (1992) 5858–5860.
[17] T.A. Vaganova, S.Z. Kusov, V.I. Rodionov, I.K. Shundrina, G.E. Sal’nikov, V.I. Mama-
tyuk, E.V. Malykhin, J. Fluorine Chem. 129 (2008) 253–260.
[18] (a) T.A. Vaganova, S.Z. Kusov, V.I. Rodionov, I.K. Shundrina, E.V. Malykhin, Russ.
Chem. Bull., Int. Ed. 56 (2007) 2239–2246;
(b) S.Z. Kusov, V.I. Rodionov, T.A. Vaganova, I.K. Shundrina, E.V. Malykhin, J.
Fluorine Chem. 130 (2009) 461–465.
[19] (a) A.P. Gies, W.K. Nonidez, M. Anthamatten, R.C. Cook, J.W. Mays, Rapid Com-
mun. Mass Spectrom. 16 (2002) 1903–1910;
Solution of tetrafluorophthalic anhydride and 2-aminohepta-
fluoronaphthalene in NMP was kept under stirring in argon
atmosphere at 80 8C for 36 h to the formation of FNPA; 19F NMR
(NMP):
d
ꢁ156.3 (m, 1 F, F7
0
), ꢁ154.9 (t, 1 F, J = 18, F6 ), ꢁ152.9 and
0
ꢁ151.5 (both t, both 1 F, J = 20, F3 and F6), ꢁ148.8 (dt, 1 F, J = 58,
J = 17, F
J = 16, F
0
4 ), ꢁ147.0 (dt, 1 F, J = 58, J = 16, F5
8 ), ꢁ138.9 (m, 1 F, F3 ), ꢁ139.4 and ꢁ138.0 (both m, both 1
1 ).
0
), ꢁ145.7 (dt, 1 F, J = 65,
0
0
F, F4 and F5), ꢁ123.9 (dd, 1 F, J = 65, J = 17, F
0
Thermal imidization of FNPA and sublimation of the product at
200 8C/5 Torr gave FNPI, mp 201.5–202.5 8C. 19F NMR (acetone-d6):
(b) A.P. Gies, W.K. Nonidez, Anal. Chem. 76 (2004) 1991–1997;
(c) A.P. Gies, W.K. Nonidez, M. Anthamatten, R.C. Cook, Macromolecules 37
(2004) 5923–5929;
(d) J.E. Klee, Eur. J. Mass Spectrom. 11 (2005) 591–610;
(e) H.R. Kricheldorf, S.C. Fan, L. Vakhtangishvili, G. Schwarz, D. Fritsch, J. Polym.
Sci. A Polym. Chem. 43 (2005) 6272–6281.
0
0
d
ꢁ154.8 (m, 1 F, F7 ), ꢁ151.9 (t, 1 F, J = 16, F6 ), ꢁ146.9 (dt, 1 F,
J = 60, J = 17, F ), ꢁ143.9 (dt, 1 F,
0
4 ), ꢁ145.8 (dt, 1 F, J = 60, J = 16, F5
0
0
0
J = 67, J = 16, F8 ), ꢁ140.2 (m, 1 F, F3 ), ꢁ143.0 and ꢁ136.1 (both q, 2
F, J = 10, F3,6 and F4,5), ꢁ120.9 (dd, 1 F, J = 67, J = 17, F
0
1 ). HRMS
[20] (a) M. Bruch, A. Burgath, T. Loontjens, R. Mulhaupt, J. Polym. Sci. A Polym. Chem.
37 (1999) 3367–3376;
calcd. for C18F11NO2: 470.9748, found: 470.9744.
(b) R.N. Jagtap, A.H. Ambre, Bull. Mater. Sci. 28 (2005) 515–528;
(c) E. Ranucci, P. Ferruti, R. Annunziata, I. Gerges, G. Spinelli, Macromol. Biosci. 6
(2006) 216–227.
4.3. A typical two-step synthesis of ODPA/DAHFN polyimides
[21] S. Ando, T. Matsuura, S. Sasaki, Polymers for Microelectronics, Resists and
Dielectrics. ACS Symposium Series 537, American Chemical Society, Washington,
DC, 1994, pp. 304–322.
[22] (a) J.S. Stults, H.C. Lin, R.A. Buchanan, R.L. Ostrozynski, US patent 5,498,691
(1996).;
(b) J.C. Stults, H.C. Lin, R.A. Buchanan, US patent 5,675,039 (1997).
(c) M.K. Cerber, J.R. Pratt, A.K. St. Clair, T.L. St. Clair, Polym. Prepr. 31 (1990) 340.
[23] (a) X. Liu, J. Tang, Y. Zheng, Y. Gu, J. Polym. Sci., B Polym. Phys. 43 (2005) 1997–
2004;
4.3.1. Solution stage
Equimolar amounts (5 mmol) of ODPA (1.5511 g) and DAHFN
(1.3307 g) were added to NMP (15 mL) in round-bottom flask to
15% concentration by weight and the solution was stirred at room
temperature for 24 h (method A) or at 80 8C for 48 h (method B). All
procedures were performed under argon atmosphere.
(b) R. Zhang, X. Liu, Y. Gu, J. Polym. Sci., B Polym. Phys. 46 (2008) 659–667.
[24] X.-Q. Liu, K. Yamanaka, M. Jikei, M. Kakimoto, Chem. Mater. 12 (2000) 3885–3891.
[25] S.H. Lin, F. Li, S.Z.D. Cheng, F.W. Harris, Macromolecules 31 (1998) 2080–2086.
[26] L. Cassidei, O. Sciacovelli, L. Forlani, Spectrochim. Acta A 38 (1982) 755–758.
[27] D. Price, H. Suschitzky, J.I. Hollies, J. Chem. Soc. C (1969) 1967–1973.
[28] I.M. Moryakina, L.N. Diakur, Zh. Vses. Khim. Obschest. im. D.I. Mendeleeva 12
(1967) 698–699;
4.3.2. Solid stage
Condensation solution (A or B) was cast onto a glass plate and
kept in vacuum oven at 80 8C for 12 h to constant weight. Polymer
resin thus obtained was cured at the final temperature (variants
150, 250, 350 8C) for 1 h. The rate of heating to the cure
temperature was 1 8C minꢁ1
I.M. Moryakina, L.N. Diakur, Chem. Abstr. 68 (119289) (1968).