Iron(II) Spin-Transition Complexes with Dendritic Ligands, Part II
–
[14] M. Slany, M. Bardaji, A.-M. Caminade, B. Chaudret, J. P. Ma-
joral, Inorg. Chem. 1997, 36, 1939–1945.
C–O), 1699.0 (s, –CONH–), 1157.2 (s, CF3), 1252.8 (m, R–SO3 ),
1465.3, 1377.7, 1349.5, 1327.7, 1174.6 (triazole) cm–1.
[15] M. Enomoto, T. Aida, J. Am. Chem. Soc. 2002, 124, 6099–
Synthesis of [Fe(G1-DPBE)3](tosylate)2·xH2O (4): A similar pro-
cedure was employed to prepare 4 using Fe(tosylate)2·6H2O
(0.0338 g, 0.067 mmol) and G1-DPBE (0.2271 g, 0.2 mmol); yield
93%. C227H362FeN12O27S2 (3811.39): calcd. C 71.47, H 9.50, N
4.41, S 1.68; found C 71.31, H 9.51, N 4.30, S 1.79. IR (KBr pel-
6108.
[16] a) Topics in Current Chemistry, vol. 233–235, Spin Crossover in
Transition Metal Compounds, parts I–III (Eds.: P. Gütlich,
H. A. Goodwin), Springer, Berlin, Heidelberg, 2004; b) P.
Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. Engl.
1994, 33, 2024–2054; Angew. Chem. 1994, 106, 2109–2141.
[17] J.-F. Létard, P. Guionneau, L. Goux-Capes, Top. Curr. Chem.
2004, 235, 221–249.
[18] a) O. Kahn, Curr. Opin. Solid State Mater. Sci. 1996, 1, 547–
556; b) P. Gütlich, Y. Garcia, T. Woike, Coord. Chem. Rev.
2001, 219–221, 839–879; c) A. Bousseksou, G. Molnär, J.-P.
Tuchagues, N. Menéndez, E. Codjovi, F. Varret, C. R. Chim.
2003, 6, 329–334; d) J. A. Real, A. B. Gaspar, V. Niel, M. C.
Muñoz, Coord. Chem. Rev. 2003, 236, 121–141; e) A. Boussek-
sou, F. Varret, M. Goiran, K. Boukheddaden, J.-P. Tuchagues,
Top. Curr. Chem. 2004, 235, 65–84 and references cited therein;
f) E. König, Struct. Bonding (Berlin) 1991, 76, 51–152; g) P.
Gütlich, Y. Garcia, H. A. Goodwin, Chem. Soc. Rev. 2000, 29,
419–427.
lets): ν = 1599.3 (s, Ar), 2923.5, 2853.3 (–CH –), 683.7 (m, substi-
˜
2
tuted Ar), 1054.6 (m, C–O) 1696.4 (s, –CONH–), 1217.3 (m,
R–SO3 ), 1466.0, 1378.5, 1348.9, 1326.2, 1164.5 (triazole) cm–1.
–
Synthesis of [Fe(G1-DPBE)3](BF4)2·xH2O (5): The same procedure
as for 4 was employed to prepare 5 using Fe(BF4)2·6H2O (0.0231 g,
0.067 mmol) and G1-DPBE (0.2252 g, 0.2 mmol), and was dried
under vacuum; yield 90%. C223H348B2F8FeN12O21 (3762.72): calcd.
C 70.23, H 9.62, N 4.61; found C 70.28, H 9.50, N 4.41.
Acknowledgments
[19] L. Salmon, A. Bousseksou, B. Donnadieu, J.-P. Tuchagues, In-
org. Chem. 2005, 44, 1763–1773.
[20] P. J. van Koningsbruggen, Top. Curr. Chem. 2004, 233, 123–
149.
[21] P. M. Sonar, C. M. Grunert, Y.-L. Wei, J. Kusz, P. Gütlich,
A. D. Schlüter, Eur. J. Inorg. Chem. 2008, 1613–1622.
[22] T. Fujigaya, D.-L. Jiang, T. Aida, J. Am. Chem. Soc. 2005, 127,
5484–5489.
We are thankful to B. Mathiasch for the performance of infrared
spectroscopy, to M. Colussi for help with DSC and TGA measure-
ments and to Dr. Christian Baerlocher for the XRD measurements
(ETH Zürich). We acknowledge the financial support from the
Deutsche Forschungsgemeinschaft (DFG), Priority Program no.
1137 (“Molecular Magnetism”).
[23] O. Kahn, C. J. Martinez, Science 1998, 279, 44–48.
[24] E. Codjovi, L. Sommier, O. Kahn, C. Jay, New J. Chem. 1996,
20, 503–505.
[25] Y. Garcia, P. J. van Koningsbruggen, E. Codjovi, R. Lapouy-
ade, O. Kahn, L. Rabardel, J. Mater. Chem. 1997, 7, 857–858.
[26] A. Zhang, L. L. Okrasa, T. Pakula, A. D. Schlüter, J. Am.
Chem. Soc. 2004, 126, 6658–6666.
[27] M. Seredyuk, A. B. Gaspar, V. Ksenofontov, S. Reiman, Y. Ga-
lyametdinov, W. Haase, E. Rentschler, P. Gütlich, Chem. Mater.
2006, 18, 2513–2519; A. B. Gaspar, M. Seredyuk, P. Gütlich,
Coord. Chem. Rev. 2009, 253, 2399–2413.
[28] J.-P. Tuchagues, A. Bousseksou, G. Molnar, J. J. McGarvey, F.
Varret, Top. Curr. Chem. 2004, 235, 85–103.
[1] D. J. Díaz, G. D. Storrier, S. Bernhard, K. Takada, H. D. Ab-
ruña, Langmuir 1999, 15, 7351–7354.
[2] G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendrimers and
Dendrons: Concepts, Syntheses, Applications, VCH, Weinheim,
2001. J. M. J. Fréchet, D. A. Tomalia (Eds.), Dendrimers and
Other Dendritic Polymers, Wiley, Chichester, 2001.
[3] F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681–1712.
[4] D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew.
Chem. Int. Ed. Engl. 1990, 29, 138–175.
[5] M. Fischer, F. Vögtle, Angew. Chem. Int. Ed. 1999, 38, 884–
905.
[6] J.-M. J. Fréchet, Science 1994, 263, 1710–1715.
[7] M. Benito, O. Rossell, M. Seco, G. Segalés, V. Maraval, R.
Laurent, A.-M. Caminade, J.-P. Majoral, J. Organomet. Chem.
2001, 622, 33–37.
[29] M. Sorai, J. Ensling, K. M. Hasselbach, P. Gütlich, Chem.
Phys. 1977, 20, 197–208; K. H. Sugiyarto, H. A. Goodwin,
Aust. J. Chem. 1988, 41, 1645–1648; K. H. Sugiyarto, K.
Weitzner, D. C. Graig, H. A. Goodwin, Aust. J. Chem. 1997,
50, 869–873.
[8] E. C. Constable, C. E. Housecroft, M. Neuburger, S. Schaffner,
L. J. Scherer, Dalton Trans. 2004, 2635–2642.
[9] C. Díaz, M. Barbosa, Z. Godoy, Polyhedron 2004, 23, 1027–
1035.
[10] M. T. Reetz, G. Lohmer, R. Schwickardi, Angew. Chem. Int.
Ed. Engl. 1997, 36, 1526–1539.
[11] F. G. A. Jansen, E. M. M. de Brabander-van den Berg, E. W.
Meiser, Recl. Trav. Chim. Pays-Bas 1995, 114, 225–230.
[12] J. W. J. Knapen, A. W. van der Made, J. C. de Wilde,
P. W. N. M. van Leeuven, P. Wijkens, D. M. Grove, G.
van Koten, Nature 1994, 372, 659–663.
[13] a) A. Miedaner, C. J. Curtis, R. M. Barkley, D. L. DuBois, In-
org. Chem. 1994, 33, 5482–5490; b) A. M. Herring, B. D. Stef-
fey, A. Miedaner, S. A. Wander, D. L. DuBois, Inorg. Chem.
1995, 34, 1100–1109.
[30] Y. Garcia, P. Guionneau, G. Bravic, D. Chasseau, J. A. K.
Howard, O. Kahn, V. Ksenofontov, S. Reiman, P. Gütlich, Eur.
J. Inorg. Chem. 2000, 1531–1538.
[31] J. J. A. Kolnaar, G. Dijk, H. Kooijiman, A. L. Spek, V. G.
Ksenofontov, P. Gütlich, J. G. Haasnoot, J. Reedijk, Inorg.
Chem. 1997, 36, 2433–2440.
[32] Y. Garcia, P. J. van Koningsbruggen, R. Lapouyade, L.
Fournès, L. Rabardel, O. Kahn, V. Ksenofontov, G. Levchenko,
P. G ütlich, Chem. Mater. 1998, 10, 2426–2433.
[33] T. Fujigaya, D.-L. Jiang, T. Aida, J. Am. Chem. Soc. 2003, 125,
14690–14691.
Received: January 22, 2010
Published Online: July 14, 2010
Eur. J. Inorg. Chem. 2010, 3930–3941
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3941