10.1002/anie.201904689
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G.
Terraneo, Chem. Rev. 2016, 116, 2478.
simulation using dihydro-1b indicates that the π-π stacking mode
is more stable than the halogen bonding mode, the diphenyl-
substituent on 1d would contribute to the destabilization of mode
B (See details in SI). To address the diastereoselectivity in the
reaction of 2e with 4a, possible transition state (TS) series were
compared.[19] In a similar manner to 2-vinylindole/1d complex, the
halogen bonding TS tends to be more stable than the π-π
stacking TS (See details in SI). In good agreement with the
experimental result, TS_syn providing major isomer 5f is 0.7
kcal/mol more stable than TS_anti (Figure 3b). (Although the
interaction between 4a with the catalyst is also considerable, the
adduct came from 4a as a dienophile didn’t produced in the
reaction examined in entry 6 of Table 3.) In TS_syn, the halogen
bond is retained on C3 of 2e, and the NH-π interactions occur
between 2e and the phenyl ring of 4a. The NH-π interactions
would contribute to the high syn-selectivity.
a) M. Fourmigue, P. Batail, Chem. Rev. 2004, 104, 5379; b) L. Brammer,
G. M. Espallargas, S. Libri, CrystEngComm 2008, 10, 1712; c) D. W.;
Bruce, P. Metrangolo, F. Meyer, T. Pilati, C. Prasang, G. Resnati, G.
Terraneo, S. G. Wainwright, A. C. Whitwood, Chem. – Eur. J. 2010, 16,
9511.
[5]
a) P. Auffinger, F. A. Hays, E. Westhof, P. S. Ho, Proc. Natl. Acad. Sci.
USA 2004, 101, 16789; b) A. R. Voth, F. A. Hays, P. S. Ho, Proc. Natl.
Acad. Sci. USA 2007, 104, 6188; c) A. R. Voth, P. Khuu, K. Oishi, P. S.
Ho, Nat. Chem. 2009, 1, 74.
[6]
[7]
Recent reviews on XB in organic synthesis and catalysis: a) T. M. Beale,
M. G. Chudzinski, M. G. Sarwar, M. S. Taylor, Chem. Soc. Rev. 2013,
42, 1667; b) D. Bulfield, S. M. Huber, Chem. – Eur. J. 2016, 22, 14434.
a) A. Bruckmann, M. A. Pena, C. Bolm, Synlett 2008, 900; b) S. P. Bew,
S. A. Fairhurst, D. L. Hughes, L. Legentil, J. Liddle, P. Pesce, S. Nigudkar,
M. A. Wilson, Org. Lett. 2009, 11, 4552; c) O. Coulembier, F. Meyer, P.
Dubois, Polym. Chem. 2010, 1, 434; d) F. Kniep, S. H. Jungbauer, Q.
Zhang, S. M. Walter, S. Schindler, I. Schnapperelle, E. Herdtweck, S. M.
Huber, Angew. Chem., Int. Ed. 2013, 52, 7028; e) W. He, Y. C. Ge, C. H.
Tan, Org. Lett. 2014, 16, 3244; f) S. H. Jungbauer, S. M. Walter, S.
Schindler, L. Rout, F. Kniep, S. M. Huber, Chem. Commun. 2014, 50,
6281; g) S. H. Jungbauer, S. M. Huber, J. Am. Chem. Soc. 2015, 137,
12110; h) Y. Takeda, D. Hisakuni, C. H. Lin, S. Minakata, Org. Lett. 2015,
17, 318; i) A. Matsuzawa, S. Takeuchi, K. Sugita, Chem. – Asian J. 2016,
11, 2863; j) I. Kazi, S. Guha, G. Sekar, Org. Lett. 2017, 19, 1244; k) M.
Saito, Y. Kobayashi, S. Tsuzuki, Y. Takemoto, Angew. Chem., Int. Ed.
2017, 56, 7653; l) D. von der Heiden, S. Bozkus, M. Klussmann, M.
Breugst, J. Org. Chem. 2017, 82, 4037; m) J.-P. Gliese, S. H. Jungbauer,
S. M. Huber, Chem. Commun. 2017, 53, 12052; n) S. Kuwano, T. Suzuki,
T. Arai, Heterocycles, 2018, 97, 163; o) Y. Kobayashi, Y. Nakatsuji, S. Li,
S. Tsuzuki, Y. Takemoto, Angew. Chem. Int. Ed. 2018, 57, 3646; p) Y.-
C. Chan, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2018, 57, 3483; q) R.
Haraguchi, S. Hoshino, M. Sakai, S. Tanazawa, Y. Morita, T. Komatsu,
S. Fukuzawa, Chem. Commun. 2018, 54, 10320; r) K. Matsuzaki, H. Uno,
E. Tokunaga, N. Shibata, ACS Catal. 2018, 8, 6601.
In conclusion, cationic halogen bond donor-catalyzed
homo- and cross-[4+2] cycloaddition reactions of 2-alkenylindoles
were developed. Under mild reaction conditions, various 3-
indolyl-substituted tetrahydrocarbazole derivatives were obtained
in good to high yields. From experimental and quantum
calculation studies, electrophilic activation of 2-alkenylindoles
based on C−I···π halogen bond was realized. Further
investigations to determine details about the activation mode
using C−X···π halogen bonds and to discover new reactions
using this non-covalent interaction are underway.
Acknowledgements
This research is supported by JSPS KAKENHI Grant Number
JP19H02709 in Grant-in-Aid for Scientific Research (B),
JP16H01004 and JP18H04237 in Precisely Designed Catalysts
with Customized Scaffolding, JP18H04660 (Hybrid Catalysis),
19K15553 in Grant-in-Aid for Young Scientists, and the Futaba
Research Grant Program of the Futaba Foundation.
[8]
[9]
T. Arai, K. Horigane, O. Watanabe, J. Kakino, N. Sugiyama, H. Makino,
Y. Kamei, S. Yabe, M. Yamanaka, iScience 2019, 12, 280.
Z. Xu, Z. Yang, Y. Liu, Y. Lu, K. Chen, W. Zhu, J. Chem. Inf. Model. 2014,
54, 69.
[10] a) H. A. Benesi, J. H. Hildebrand, J. Am. Chem. Soc. 1949, 71, 2703; b)
R. S. Mulliken J. Am. Chem. Soc. 1950, 72, 600; c) C. Laurence, M.
Queignec-Cabanetos, T. Dziembowska, R. Queignec, B. Wojtkowiak, J.
Am. Chem. Soc. 1981, 103, 2567.
Keywords: halogen bond • cycloaddition • catalysis • indole •
[11] a) J. C. Ma, D. A. Dougherty, Chem. Rev. 1997, 97, 1303; b) J. P.
Gallivan, D. A. Dougherty, Proc. Natl. Acad. Sci. USA 1999, 96, 9459; c)
N. Zacharias, D. A. Dougherty, Trends Pharmacol. Sci. 2002, 23, 281; d)
D. A. Dougherty, Acc. Chem. Res. 2013, 46, 885.
DFT
[1]
a) A. S. Mahadevi, G. N. Sastry, Chem. Rev. 2016, 116, 2775; b) A. M.
Maharramov, K. T. Mahmudov, M. N. Kopylovich, A. J. L. Pombeiro, Non-
covalent Interactions in the Synthesis and Design of New Compounds
(Eds.: A. M. Maharramov, K. T. Mahmudov, M. N. Kopylovich, A. J. L.
Pombeiro,), Wiley-VCH, Weinheim, 2016; c) A. K. Baev, Specific
Intermolecular Interactions of Organic Compounds, Springer, Heidelberg,
Germany/New York, USA 2012; d) A. K. Baev, Specific Intermolecular
Interactions of Nitrogenated and Bioorganic Compounds, Springer,
Heidelberg, Germany/New York, USA 2014; e) P. Hobza, K. Müller-
Dethlefs, Non-covalent interactions, The Royal Society of Chemistry,
Cambridge, 2010.
[12] T. Narumi, S. Tsuzuki, H. Tamamura, Asian J. Org. Chem. 2014, 3, 497.
[13] C.-B. Chen, X. F. Wang, Y. J. Cao, H. G. Cheng, W. J. Xiao. J. Org.
Chem., 2009, 74, 3532.
[14] a) H. J. Knolker, R. R. Kethiri, Chem. Rev. 2002, 102, 4303; b) N. Misra,
R. Luthra, K. L. Singh, S. Kumar, in Comprehensive Natural Products
Chemistry (Eds.: Kelly, J. W.), Elsevier, Amsterdam, 1999, 4, 54.
[15] When chiral 1,2-diphenylethane-1,2-diamine-derived 1d was used,
racemic 3a was obtained.
[16] T. T. Dang, F. Boeck, L. Hintermann, J. Org. Chem. 2011, 76, 9353.
[17] F. Kniep, S. H. Jungbauer, Q. Zhang, S. M. Walter, S. Schindler, I.
Schnapperelle, E. Herdweck, S. M. Huber, Angew. Chem., Int. Ed. 2013,
52, 7028.
[2]
a) G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University
Press, New York, 1997; b) G. R. Desiraju, T. Steiner, The Weak
Hydrogen Bond in Structural Chemistry and Biology, Oxford University
Press, New York, 1999; c) P. M. Pihko, Hydrogen Bonding in Organic
Synthesis (Ed.: P. M. Pihko), Wiley-VCH, Weinheim, 2009; d) G. Gilli, P.
Gilli, The Nature of the Hydrogen Bond, Oxford University Press, New
York, 2009; e) Y. Sohtome, K. Nagasawa, Chem. Commun. 2012, 48,
7777; f) X. Fu, C.-H. Tan, Chem. Commun. 2011, 47, 8210.
[18] M06-2X/LANL2DZdp for I and 6-31+G* for C,H,N. Computational details
are shown in Supporting Information.
[19] Possible diastereomeric halogen bonding complex (mode A) and TSs
corresponding to the facial selectivity of 2-vinylindole were also
addressed. Chiral center of 1d has no impact on the gross structures and
energetics (See details in SI).
This article is protected by copyright. All rights reserved.