3 For reviews on applications see: B. W. Fravel and N. A. Nedolya,
in Comprehensive Heterocyclic Chemistry III, ed. A. R. Katritzky,
C. A. Ramsden, E. F. V. Scriven and R. J. K. Taylor, Elsevier Ltd,
Oxford, 2008, vol. 7, pp. 701–726 and previous editions of this
series.
4 (a) T. A. Engler, K. O. LaTessa, R. Iyengar, W. Chai and
K. Agrios, Bioorg. Med. Chem., 1996, 4, 1755; (b) Y. Kashiwada,
K. Yamazaki, Y. Ikeshiro, T. Yamagishi, T. Fujioka, K. Mihashi,
K. Mizuki, L. M. Cosentino, K. Fowke, S. L. Morris-Natschke
and K.-H. Lee, Tetrahedron, 2001, 57, 1559.
Fig. 2 Electronic effects.
5 A. Elomri, S. Mitaku, S. Michel, A.-L. Skaltsounis, F. Tillequin,
M. Koch, A. Pierre, N. Guilbaud, S. Leonce, L. Kraus-Berthier,
´
Y. Rolland and G. Atassi, J. Med. Chem., 1996, 39, 4762.
6 M. Kidwai, S. Saxena, M. K. R. Khan and S. S. Thukral,
Bioorg. Med. Chem. Lett., 2005, 15, 4295.
7 C. Tahtaoui, A. Demailly, C. Guidemann, C. Joyeux and
P. Schneider, J. Org. Chem., 2010, 75, 3781.
8 J. H. G. Lago, C. S. Ramos, D. C. C. Casanova,
A. de A. Morandim, D. C. B. Bergamo, A. J. Cavalheiro,
V. da S. Bolzani, M. Furlan, E. F. Guimaraes, M. C. M. Young
and M. J. Kato, J. Nat. Prod., 2004, 67, 1783.
9 C. B. Bernard, H. G. Krishnamurty, D. Chauret, T. Durst, B. J. R.
Philogene, P. Sanchez-Vindas, C. Hasbun, L. Poveda, L. San
Roman and J. T. Arnason, J. Chem. Ecol., 1995, 21, 801.
10 K. Mukai, K. Okabe and H. Hosose, J. Org. Chem., 1989, 54, 557.
11 J. Jankun, S. H. Selman and R. Swiercz, Nature, 1997, 387, 561.
12 (a) S. Paramonov, S. Delbaere, O. Fedorova, Y. Fedorov,
V. Lokshin, A. Samat and G. Vermeersch, J. Photochem.
Photobiol., A, 2010, 209, 111; (b) R. A. Evans and G. K. Such,
Aust. J. Chem., 2005, 58, 825.
Scheme 2 Control experiments with transposed allylic alcohols.
groups accelerate the reaction and provide the products in
higher yields with shorter reaction times (p-OMe, 98% yield in
10 min versus p-NO2, 33% yield, 24 h).
To further probe this issue 38 and 39 (Scheme 2), with the
allylic alcohol transposed from the typical position, were
prepared and treated under the reaction conditions. If the
mechanism is cationic, these substrates would be predicted to
ionize and cyclize to form the corresponding chromenes.19
Surprisingly, no reaction was observed. One possible explanation
is that the role of the catalyst may change depending on the
structure of the substrate. The catalyst may function as a
Lewis acid when ionization is facile and as a p-acid when the
substrate is not readily ionized. Although the mechanistic
details remain unclear, the Au(I)-catalyst system has proven
to be unique in this system and functions well on diverse
substrates. Further experiments are being conducted to
elucidate the role of the catalyst.
13 For select examples see: (a) M. C. Brohmer, N. Volz and S. Brase,
¨
¨
Synlett, 2009, 1383; (b) F. Liu, T. Evans and B. C. Das,
Tetrahedron Lett., 2008, 49, 1578; (c) Y.-L. Shi and M. Shi,
Org. Biomol. Chem., 2007, 5, 1499; (d) J. C. Hershberger,
L. Zhang, G. Lu and H. C. Malinakova, J. Org. Chem., 2006,
71, 231; (e) S. W. Youn and J. I. Eom, Org. Lett., 2005, 7, 3355;
(f) S. Chang and R. H. Grubbs, J. Org. Chem., 1998, 63, 864 and
references cited therein.
14 For leading references on Au-catalyzed hydroarylation to form
chromenes see: (a) R. S. Menon, A. D. Findlay, A. C. Bissember
and M. G. Banwell, J. Org. Chem., 2009, 74, 8901;
(b) T. Watanabe, S. Oishi, N. Fujii and H. Ohno, Org. Lett.,
2007, 9, 4821; (c) N. Mezailles, L. Ricard and F. Gagosz,
Org. Lett., 2005, 7, 4133; (d) C. Nevado and A. M. Echavarren,
Chem.–Eur. J., 2005, 11, 3155. For Pt and other metals see:
(e) B. Martin-Matute, C. Nevado, D. J. Cardenas and
A. M. Echavarren, J. Am. Chem. Soc., 2003, 125, 5757;
(f) S. J. Pastine, S. W. Youn and D. Sames, Tetrahedron, 2003,
59, 8859 and references cited therein.
15 (a) A. Aponick, C.-Y. Li and B. Biannic, Org. Lett., 2008, 10, 669;
(b) A. Aponick and B. Biannic, Synthesis, 2008, 3356; (c) A. Aponick,
C.-Y. Li and J. A. Palmes, Org. Lett., 2009, 11, 121; (d) A. Aponick,
C.-Y. Li, J. Malinge and E. F. Marques, Org. Lett., 2009, 11, 4624;
(e) P. Mukherjee and R. A. Widenhoefer, Org. Lett., 2010, 12, 1184;
(f) M. Bandini and A. Eichholzer, Angew. Chem., Int. Ed., 2009, 48,
9533; (g) Y. Lu, X. Fu, H. Chen, X. Du, X. Jia and Y. Liu, Adv.
Synth. Catal., 2009, 351, 129; (h) X.-Z. Shu, X.-Y. Liu, H.-G. Xiao,
K.-Q. Ji, L.-N. Guo and L.-M. Liang, Adv. Synth. Catal., 2008, 350,
243; (i) S. Guo, F. Song and Y. Liu, Synlett, 2007, 964; (j) M. Georgy,
V. Boucard, O. Debleds, C. Dal Zotto and J.-M. Campagne,
Tetrahedron, 2009, 65, 1758; (k) P. Kothandaraman, S. J. Foo and
P. W. H. Chan, J. Org. Chem., 2009, 74, 5947.
In summary, an efficient method for the formation of
2H-chromenes has been developed. The title compounds are
readily prepared in two steps with high yield starting from
salicylaldehydes. The substrate scope is broad and provides a
diverse range of products with different substitution patterns
and electronic nature in the aromatic ring. Studies to further
elucidate the reaction mechanism are underway and will be
reported in due course.
We thank the Herman Frasch Foundation (647-HF07), the
donors of the Petroleum Research Fund (47539-G1), and the
James and Ester King Biomedical Research Program
(09KN-01) for their generous support of our programs. We
thank Petra Research, Inc. for an unrestricted research award.
Notes and references
1 (a) G. P. Ellis, Chromenes, chromanones, and chromones,
Wiley-Interscience, New York, 1977; (b) J. D. Hepworth, in
Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky,
C. W. Rees, A. J. Boulton and A. McKillop, Pergamon Press,
Oxford, 1984, vol. 3, pp. 737–883.
2 For reviews on chromene synthesis see: M. A. Brimble,
J. S. Gibson and J. Sperry, in Comprehensive Heterocyclic
Chemistry III, ed. A. R. Katritzky, C. A. Ramsden, E. F. V.
Scriven and R. J. K. Taylor, Elsevier Ltd, Oxford, 2008, vol. 7,
pp. 419–699 and previous editions of this series.
16 As suggested by a reviewer, the reaction was also run with the
conditions in Table 1, entry 8 and in the presence of 1 equivalent of
p-nitrophenol. After 20 h, only 50% conversion was achieved and 6
was isolated in 32% yield.
17 T. J. Brown, M. G. Dickens and R. A. Widenhoefer, J. Am. Chem.
Soc., 2009, 131, 6350.
18 A. S. K. Hashmi, Catal. Today, 2007, 122, 211.
19 (a) J. J. Talley, Synthesis, 1983, 845; (b) S. B. Ferreira, F. de C. da Silva,
A. C. Pinto, D. T. G. Gonzaga and V. F. Ferreira, J. Heterocycl.
Chem., 2009, 46, 1080.
c
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 6849–6851 6851