C O M M U N I C A T I O N S
Scheme 3. Proposed Mechanism for Palladium-Catalyzed Aerobic
Allylic Acetoxylation
I. A.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 10212–10213. (d) Konnick,
M. M.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 5753–5762. (e) Popp,
B. V.; Stahl, S. S. Chem.sEur. J. 2009, 15, 2915–2922.
(7) For example, see: (a) Vargaftik, M. N.; Moiseev, I. I.; Syrkin, Y. K.;
Yakshin, V. V.; Lomonosov, M. V. IzV. Akad. Nauk SSSR 1962, 5, 930–
931. (b) Kitching, W.; Rappoport, Z.; Winstein, S.; Young, W. G. J. Am.
Chem. Soc. 1966, 88, 2054–2055. (c) Kikukawa, K.; Sakai, K.; Asada, K.;
Matsuda, T. J. Organomet. Chem. 1974, 77, 131–145. (d) Heumann, A.;
Åkermark, B. Angew. Chem., Int. Ed. Engl. 1984, 23, 453–454. (e)
McMurry, J. E.; Kocˇotovsky´, P. Tetrahedron Lett. 1984, 25, 4187–4190.
(f) Jia, C.; Mu¨ller, P.; Mimoun, H. J. Mol. Catal. A: Chem. 1995, 101,
127–136. (g) El Firdoussi, L.; Baqqa, A.; Allaoud, S.; Allal, B. A.; Karim,
A.; Castanet, Y.; Mortreux, A. J. Mol. Catal. A: Chem. 1998, 135, 11–22.
(h) Grennberg, H.; Ba¨ckvall, J.-E. Chem.sEur. J. 1998, 4, 1083–1089. (i)
Attolini, M.; Peiffer, G.; Maffei, M. Tetrahedron 2000, 56, 2693–2697.
(8) (a) Chen, M. S.; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346–1347.
(b) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. J. Am. Chem.
Soc. 2005, 127, 6970–6971. (c) Mitsudome, T.; Umetani, T.; Nosaka, N.;
Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed.
2006, 45, 481–485. (d) Lin, B.-L.; Labinger, J. A.; Bercaw, J. E. Can.
J. Chem. 2009, 87, 264–271. (e) Pilarski, L. T.; Selander, N.; Bo¨se, D.;
Szabo´, K. J. Org. Lett. 2009, 11, 5518–5521. (f) Henderson, W. H.; Check,
C. T.; Proust, N.; Stambuli, J. P. Org. Lett. 2010, 12, 824–827. (g) Thiery,
E.; Aouf, C.; Belloy, J.; Harakat, D.; Le Bras, J.; Muzart, J. J. Org. Chem.
2010, 75, 1771–1774.
of the present results, we anticipate that it might be possible to
identify ancillary ligands that facilitate reductive elimination from
PdII and thereby eliminate the requirement for undesirable stoichio-
metric oxidants in these reactions as well. Efforts to test this hy-
pothesis have been initiated.
(9) For leading references to other advances in Pd-catalyzed allylic C-H
oxidation, see: (a) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc.
2007, 129, 7274–7276. (b) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int.
Ed. 2008, 47, 4733–4736. (c) Vermeulen, N. A.; Delcamp, J. H.; White,
M. C. J. Am. Chem. Soc. 2010, 132, 11323–11328. (d) Yin, G.; Wu, Y.;
Liu, G. J. Am. Chem. Soc. 2010, 132, 11978–11987.
Acknowledgment. We are grateful to the NIH (R01-GM67163
to S.S.S.; F32-GM087890 to A.N.C.) and the Camille and Henry
Dreyfus Postdoctoral Program in Environmental Chemistry for
financial support of this work. High-pressure instrumentation was
supported by the NSF (CHE-0946901).
(10) Grennberg, H.; Gogoll, A.; Ba¨ckvall, J.-E. Organometallics 1993, 12, 1790–
1793.
(11) For example, see: (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S.
Tetrahedron Lett. 1998, 39, 6011–6014. (b) Fix, S. R.; Brice, J. L.; Stahl,
S. S. Angew. Chem., Int. Ed. 2002, 41, 164–166. (c) Nishimura, T.; Araki,
H.; Maeda, Y.; Uemura, S. Org. Lett. 2003, 5, 2997–2999. (d) Andappan,
M. M. S.; Nilsson, P.; Larhed, M. Chem. Commun. 2004, 218–219. (e)
Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A. Acc.
Chem. Res. 2002, 35, 774–781. (f) Yoo, K. S.; Park, C. P.; Yoon, C. H.;
Sakaguchi, S.; O’Neill, J.; Jung, K. W. Org. Lett. 2007, 9, 3933–3935. (g)
Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072–
5074.
Supporting Information Available: Experimental procedures,
screening data, characterization data for all new compounds, and
crystallographic data (CIF). This material is available free of charge
(12) (a) Haggin, J. Chem. Eng. News 1993, 71 (22), 23–27. (b) Beller, M.;
Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368–
3398.
References
(1) This subject has been extensively reviewed in recent years. For leading
references, see the February 2010 issue of Chemical ReViews.
(13) Poor gas-liquid mixing in 5 mm NMR tubes required the use of 3 atm O2
to ensure the presence of ∼1 equiv of dissolved O2 in solution.
(14) In the absence of oxidant, Pd black was observed at the end of the reaction,
whereas the reaction mixture remained homogeneous in the presence of
oxidant, presumably as a result of the formation of ligated PdII(OAc)2
species. Separately, it was noted that the reaction of 4 was unaffected by
the presence of excess ligand 1 (5 equiv) in solution, suggesting that
formation of allyl acetate does not proceed via pre-equilibrium dissociation
of 1 from the Pd center.
(2) For recent reviews, see: (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu,
J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094–5115. (b) Lyons, T. W.;
Sanford, M. S. Chem. ReV. 2010, 110, 1147–1169. (c) Sun, C.-L.; Li, B.-
J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677–685.
(3) The precise outcome of reactions between oxidants and organo-PdII species
varies depending on the oxidant and Pd species. In some cases, the oxidant
generates a PdIV or PdIII intermediate, whereas in other cases it is not known
whether the formal oxidation state of Pd changes. For important leading
references, see: (a) Ba¨ckvall, J.-E.; Gogoll, A. Tetrahedron Lett. 1988, 29,
2243–2246. (b) Canty, A. J. Acc. Chem. Res. 1992, 25, 83–90. (c) Seligson,
A. L.; Trogler, W. C. J. Am. Chem. Soc. 1992, 114, 7085–7089. (d) Szabo´,
K. J. Organometallics 1998, 17, 1677–1686. (e) Dick, A. R.; Kampf, J. W.;
Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790–12791. (f) Giri, R.;
Chen, X.; Yu, J. Q. Angew. Chem., Int. Ed. 2005, 44, 2112–2115. (g) Chen,
X.; Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc.
2006, 128, 78–79. (h) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem.
Soc. 2007, 129, 12072–12073. (i) Stuart, D. R.; Fagnou, K. Science 2007,
316, 1172–1175. (j) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2009,
131, 9651–9653. (k) Lanci, M. P.; Remy, M. S.; Kaminsky, W.; Mayer,
J. M.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 15618–15620. (l)
Powers, D. C.; Ritter, T. Nat. Chem. 2009, 1, 302–309. (m) Powers, D. C.;
Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc. 2009,
131, 17050–17051. (n) Khusnutdinova, J. R.; Rath, N. P.; Mirica, L. M.
J. Am. Chem. Soc. 2010, 132, 7303–7305.
(15) Lin et al.8d previously reported that the (bpm)Pd(η3-cinnamyl) complex 6 mediates
acetate exchange in cinnamyl acetate in the absence of an oxidant (eq 2):
In addition, they demonstrated that 6 is stable toward stoichiometric acetoxylation
under N2 but releases cinnamyl acetate in the presence of BQ under conditions
somewhat different from ours (AcOH, 80 °C) (cf. Figure 1). The reactivity of 6 in
the presence of O2 was not reported. Preliminary studies have suggested that
(bpm)Pd(allyl) complexes react differently under our conditions. Further work will
be needed to make a direct comparison between ligand 1 and bipyrimidine in allylic
acetoxylation reactions.
(4) For advances in Pd-catalyzed aerobic oxidation reactions, see: (a) Stahl,
S. S. Angew. Chem., Int. Ed. 2004, 43, 3400–3420. (b) Nishimura, T.;
Uemura, S. Synlett 2004, 201–216. (c) Stoltz, B. M. Chem. Lett. 2004, 33,
362–367. (d) Stahl, S. S. Science 2005, 309, 1824–1826. (e) Gligorich,
K. M.; Sigman, M. S. Chem. Commun. 2009, 3854–3867.
-
(16) The BF4 salts of 4 and 5 were characterized by X-ray crystallography.
For a summary of the structural data, see Figure S6 and the additional data
in the Supporting Information.
(17) Previous studies in our lab have demonstrated the reaction of O2 with Pd0-
alkene complexes to afford η2-peroxo species relevant to this process. See
ref 6b and: (a) Popp, B. V.; Thorman, J. L.; Stahl, S. S. J. Mol. Catal. A:
Chem. 2006, 251, 2–7. (b) Popp, B. V.; Morales, C. M.; Landis, C. R.;
Stahl, S. S. Inorg. Chem. 2010, 49, 8200–8207.
(5) For a continuous-flow process that enables safe and scalable Pd-catalyzed
aerobic oxidations, see: Ye, X.; Johnson, M. D.; Diao, T.; Yates, M. H.;
Stahl, S. S. Green Chem. 2010, 12, 1180–1186.
(6) For discussion of Pd0 oxidation by O2, see: (a) Muzart, J. Chem.sAsian J.
2006, 1, 508–515. (b) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee,
M. A. J. Am. Chem. Soc. 2001, 123, 7188–7189. (c) Konnick, M. M.; Guzei,
JA105829T
9
J. AM. CHEM. SOC. VOL. 132, NO. 43, 2010 15119