Article
The very unstable oxo halide compounds [M(C5Me5)-
Inorganic Chemistry, Vol. 49, No. 22, 2010 10643
in insertion reactions44 of CO and CNR than related mono-
cyclopentadienyl imido complexes [TaCp*R2(NR)],34,35,45,46
although the presence of the oxo ligand helped to stabilize the
new acyl derivatives.
(O)X2]n (n = 1, X = Br, I; n = 2, X = Cl) were obtained
by exposure of carbonyl complexes to air in halogenated
solvents,10 oxygen abstraction from CO2 by [TaCp*Cl2-
(PMe)3]11 and oxo-imido exchange.12 Any attempt to intro-
duce the terminal oxo ligand via hydrolysis reactions of
monocyclopentadienyl compounds [M(C5R5)X4] (M = Nb,
Ta) gave polynuclear oxo-bridged complexes.15,31-33 Con-
versely, in previous work by our group, we successfully
isolated stable 18 electron monocyclopentadienyl tantalum
compounds [TaCp*Cl(O){η2-C(Me)NR}] by intramolecular
exchange between imide and acyl groups.34,35 For niobium,
the transfer of an oxo group from oxythiolate compounds
yields terminal oxo complexes.36,37 These are to our knowl-
edge the only examples of fully characterized (X-ray diffrac-
tion studies) terminal oxo monocyclopentadienyl com-
pounds reported for tantalum and niobium, while terminal
oxo complexes are easily achieved for dicyclopentadienyl
compounds of both tantalum and niobium.1,38 Very few
other examples of non cyclopentadienyl terminal oxo tanta-
lum complexes have been described, while for niobium it is a
more common ligand.1
Terminal oxo-borane adducts have been previously
synthesized for Ti,47 V,47,48 Mo,49-52 W,52 Re,51-53 and
U54 compounds starting from the stable terminal oxo com-
plexes in reactions with the Lewis acid B(C6F5)3, also by
trapping a non-detected oxo Ti derivative,55 meanwhile Al43
and Ta39,56 complexes have been obtained by hydrolysis of
M-alkyl bonds with H2O B(C6F5)3 and Zr57 complexes by
3
hydrolysis with [NEt3H][HOB(C6F5)3]. However, similar
oxo-adduct compounds with the related Lewis acid Al-
(C6F5)3 are unknown.
Continuing with our aim to synthesize group 5 mono-
nuclear oxo complexes, we have explored the reactivity
of monocyclopentadienyl niobium compounds [NbCp0X4]
(CpR = C5H4SiMe3, X=Cl, Me) with the water adduct
H2O B(C6F5)3, analogous reactions of these complexes and
related monocyclopentadienyl tantalum derivatives with the
3
alane adduct H2O Al(C6F5)3, and finally borane-alane
3
exchange processes.
We have reported that hydrolysis of Ta-Cl and Ta-C
Results and Discussion
bonds with the water adduct H2O B(C6F5)3 was an efficient
3
method to generate mononuclear oxo compounds of the type
Hydrolysis with H2O E(C6F5)3 (E = B, Al). The same
method reported to obtain the oxo-borane tantalum
complexes [TaCp*R2{O B(C6F5)3}] (R = Cl 1a, CH2Ph
3
[TaCp*R2{O B(C6F5)3}] (R=Cl 1a, CH2Ph 1b, Me 1c),39
3
stabilized by the presence of the strong Lewis acid
3
40-42
1b, Me 1c)39 has been used to isolate the related niobium
B(C6F5)3
which avoids molecular aggregation via
adduct formation.43 These complexes showed similar behavior
derivatives. Thus, a hydrolysis reaction of [NbCp0Cl4]
(Cp0 = η5-C5H4SiMe3) with 1 equiv of H2O B(C6F5)3
afforded the green mononuclear oxo-borane complex
3
(22) Dubberley, S. R.; Ignatov, S. K.; Rees, N. H.; Razuvaev, A. G.;
Mountford, P.; Nikonov, G. I. J. Am. Chem. Soc. 2003, 125, 642.
(23) Messerle, L. W.; Jennische, P.; Schrock, R. R.; Stucky, G. J. Am.
Chem. Soc. 1980, 102, 6744.
(24) Schultz, A. J.; Brown, R. K.; Williams, J. M.; Schrock, R. R. J. Am.
Chem. Soc. 1981, 103, 169.
[NbCp0Cl2{O B(C6F5)3}] (2a) in a moderate yield upon
3
heating in toluene at 90 °C for 3 h (Scheme 1). Similar
hydrolysis of [NbCp0Me4] with H2O B(C6F5)3 gave
3
[NbCp0Me2{O B(C6F5)3}] (2c), whereas the correspond-
(25) Hessen, B.; Meetsma, A.; Vanbolhuis, F.; Teuben, J. H.; Helgesson,
G.; Jagner, S. Organometallics 1990, 9, 1925.
3
ing benzyl derivative could not be obtained following this
procedure for [NbCp0(CHPh)Bz2], where a mixture of
unidentified compounds resulted.
ꢀ
ꢀ
(26) de Castro, I.; de la Mata, J.; Gomez, M.; Gomez-Sal, P.; Royo, P.;
Selas, J. M. Polyhedron 1992, 11, 1023.
(27) Cockcroft, J. K.; Gibson, V. C.; Howard, J. A. K.; Poole, A. D.;
Siemeling, U.; Wilson, C. J. Chem. Soc., Chem. Commun. 1992, 1668.
(28) Buijink, J. K. F.; Kloetstra, K. R.; Meetsma, A.; Teuben, J. H.;
Smeets, W. J. J.; Spek, A. L. Organometallics 1996, 15, 2523.
(29) Mashima, K.; Tanaka, Y.; Kaidzu, M.; Nakamura, A. Organome-
tallics 1996, 15, 2431.
However, complex [NbCp0Bz2{O B(C6F5)3}] (2b) was
3
accessible in low yield by reaction of 2a with[MgBz2(THF)2]
ꢀ
(30) Courtenay, S.; Stephan, D. W. Organometallics 2001, 20, 1442.
(44) Sanchez-Nieves, J.; Royo, P.; Mosquera, M. E. G. Eur. J. Inorg.
ꢀ
(31) Andreu, A. M.; Jalon, F. A.; Otero, A.; Royo, P.; Lanfredi, A. M. M.;
Chem. 2006, 127.
ꢀ
Tiripicchio, A. J. Chem. Soc., Dalton Trans. 1987, 953.
(32) Jernakoff, P.; de Bellefon, C. D.; Geoffroy, G. L.; Rheingold, A. L.;
Geib, S. J. Organometallics 1987, 6, 1362.
(45) Royo, P.; Sanchez-Nieves, J.; Pellinghelli, M. A.; Tiripicchio, A.
J. Organomet. Chem. 1998, 563, 15.
´
(46) Castro, A.; Galakhov, M. V.; Gomez, M.; Gomez-Sal, P.; Martın,
ꢀ
ꢀ
ꢀ
ꢀ
(33) de la Mata, J.; Fandos, R.; Gomez, M.; Gomez-Sal, P.; Martı
´
nez-Carrera,
ꢀ
A.; Sanchez, F. J. Organomet. Chem. 2000, 595, 36.
S.; Royo, P. Organometallics 1990, 9, 2846.
(47) Galsworthy, J. R.; Green, M. L. H.; Muller, M.; Prout, K. J. Chem.
ꢀ
ꢀ
ꢀ
(34) Gomez, M.; Gomez-Sal, P.; Jimenez, G.; Martı
´
n, A.; Royo, P.;
Soc., Dalton Trans. 1997, 1309.
(48) Wolff, F.; Choukroun, R.; Lorber, C.; Donnadieu, B. Eur. J. Inorg.
Chem. 2003, 628.
(49) Doerrer, L. H.; Galsworthy, J. R.; Green, M. L. H.; Leech, M. A.;
Muller, M. J. Chem. Soc., Dalton Trans. 1998, 3191.
(50) Doerrer, L. H.; Galsworthy, J. R.; Green, M. L. H.; Leech, M. A.
J. Chem. Soc., Dalton Trans. 1998, 2483.
(51) Galsworthy, J. R.; Green, J. C.; Green, M. L. H.; Muller, M. J. Chem.
Soc., Dalton Trans. 1998, 15.
(52) Barrado, G.; Doerrer, L.; Green, M. L. H.; Leech, M. A. J. Chem.
Soc., Dalton Trans. 1999, 1061.
(53) Han, Y.; Harlan, C. J.; Stoessel, P.; Frost, B. J.; Norton, J. R.; Miller,
S.; Bridgewater, B.; Xu, Q. Inorg. Chem. 2001, 40, 2942.
(54) Sarsfield, M. J.; Helliwell, M. J. Am. Chem. Soc. 2004, 126, 1036.
(55) Kilgore, U. J.; Basuli, F.; Huffman, J. C.; Mindiola, D. J. Inorg.
Chem. 2006, 45, 487.
ꢀ
Sanchez-Nieves, J. Organometallics 1996, 15, 3579.
ꢀ
(35) Sanchez-Nieves, J.; Royo, P.; Pellinghelli, M. A.; Tiripicchio, A.
Organometallics 2000, 19, 3161.
(36) Lindsell, W. E.; Rosair, G. M.; Spence, M. A. J. Chem. Soc., Dalton
Trans. 1998, 3281.
(37) Dersch, R. K.; Jungclas, H.; Lindsell, W. E.; Rosair, G. M. J. Chem.
Soc., Dalton Trans. 2003, 126.
(38) Wigley, D. E.; Gray, S. D. In Comprehensive Organometallic Chem-
istry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford,
1995; Vol. 5, p 121.
ꢀ
~
(39) Sanchez-Nieves, J.; Frutos, L. M.; Royo, P.; Castano, O.; Herdtweck,
E. Organometallics 2005, 24, 2004.
€
(40) Vagedes, D.; Frohlich, R.; Erker, G. Angew. Chem., Int. Ed. 1999, 38,
3362.
(41) Blackwell, J. M.; Piers, W. E.; Parvez, M.; McDonald, R. Organo-
metallics 2002, 21, 1400.
ꢀ
(56) Bo, C.; Fandos, R.; Feliz, M.; Hernandez, C.; Otero, A.; Rodrıguez,
´
A.; Ruiz, M. J.; Pastor, C. Organometallics 2006, 25, 3336.
(57) Siedle, A. R.; Newmark, R. A.; Lamanna, W. M.; Huffman, J. C.
(42) Dash, A. K.; Jordan, R. F. Organometallics 2002, 21, 777.
(43) Neculai, D.; Roesky, H. W.; Neculai, A. M.; Magull, J.; Walfort, B.;
Stalke, D. Angew. Chem., Int. Ed. 2002, 41, 4294.
Organometallics 1993, 12, 1491.