challenging task, and the control of stereoselectivity is
another formidable issue for this transformation. Moreover,
the formation of an all-carbon chiral center and a simulta-
neous construction of a vicinal chiral tertiary carbon center
with complete stereocontrol would certainly add to those
difficulties greatly.8 During the past couple of years, R-alkyl-
ꢀ-keto esters have been applied frequently in such transfor-
mations with a variety of conjugate electrophilic Michael
acceptors to conquer those difficulties involving both organic
and organometallic catalysts,9 and of course, a number of
investigations of the Michael addition of ꢀ-keto esters with
different vinyl ketones had also been implemented.
For example, Hermann and Wynberg reported a seminal
work on the enantioselective conjugate additions of ꢀ-keto
esters to methyl vinyl ketone using natural cinchona alkaloid
as catalyst,10 and the highly enantioselective conjugate
addition reaction of ꢀ-keto esters with methyl vinyl ketone
had been disclosed by Sasai and Shibasaki.11 Moreover, there
were also excellent reports employing chiral organometallic
catalysts such as scandium(III) catalysts,12 palladium cata-
lysts,13 and ruthenium catalysts,14 as well as the phase
transfer catalysis reported by Maruoka and co-workers.15
More recently, an efficient cinchona alkaloid catalyst which
has been developed by Deng and co-workers also represented
an outstanding work in this transformation.16
(3) For recent books, see: (a) Berkessel, A.; Gro¨ger, H. Asymmetric
Organocatalysis; Wiley-VCH: Weinheim, Germany, 2004. (b) Dalko, P. I.
EnantioselectiVe Organocatalysis; Wiley-VCH: Weinheim, Germany, 2007.
(c) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. ComprehensiVe Asymmetric
Catalysis; Springer: Berlin, 1999. For recent reviews of asymmetric Michael
addition reactions, see: (d) Krause, N.; Hoffmann-Ro¨er, A. Synthesis 2001,
2, 171. (e) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.
(f) Berner, O. M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 1877.
(g) Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688. (h)
Fagnou, K.; Lautens, M. Chem. ReV. 2003, 103, 169. (i) Dalko, P. I.; Moisan,
L. Angew. Chem., Int. Ed. 2004, 43, 5138. (j) Houk, K. N.; List, B. Acc.
Chem. Res. 2004, 37, 487. (k) Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri,
A.; Petrini, M. Chem. ReV. 2005, 105, 933. (l) List, B. Chem. Commun.
2006, 819. (m) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006,
45, 1520. (n) Connon, S. J. Chem.sEur. J. 2006, 12, 5418. (o) Tsogoeva,
S. B. Eur. J. Org. Chem. 2007, 1701. (p) Almasi, D.; Alonso, D. A.; Na´jera,
C. Tetrahedron: Asymmetry 2007, 18, 299. (q) Almas¸i, D.; Alonso, D. A.;
Na´jera, C. Tetrahedron: Asymmetry 2007, 18, 299. (r) Melchiorre, P.;
Marigao, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47,
6138. (s) Bartoli, G.; Melchiorre, P. Synlett 2008, 1759. (t) Chen, Y.-C.
Synlett 2008, 1919. (u) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. ReV.
2009, 38, 2178. (v) Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 1807.
Selected examples: (w) Kim, H.; Yen, C.; Preston, P.; Chin, J. Org. Lett.
2006, 8, 5239. (x) Bartoli, G.; Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri,
L.; Melchiorre, P. Org. Lett. 2007, 9, 1403. (y) Lu, X.; Deng, L. Angew.
Chem., Int. Ed. 2008, 47, 7710. (z) Reisinger, C. M.; Wang, X.; List, B.
Angew. Chem., Int. Ed. 2008, 47, 8112.
Although the asymmetric conjugate addition of ꢀ-keto esters
to methyl vinyl ketone catalyzed by a variety of chiral Lewis
base, Lewis acid, Brønsted base, and Brønsted acid has been
reported, asymmetric conjugate addition of R-alkyl-ꢀ-keto esters
to ꢀ-substituted R,ꢀ-unsaturated ketones still remains a challenge
due to the above-mentioned difficulties and is definitely worthy
(4) Reviews on organocatalysis: (a) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2001, 40, 3726. (b) Dalko, P. I.; Moisan, L. Angew. Chem.,
Int. Ed. 2004, 43, 5138. (c) Seayad, J.; List, B. Org. Biomol. Chem. 2005,
3, 719. (d) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299. (e) Hayashi,
Y. J. Synth. Org. Chem. Jpn. 2005, 63, 464. (f) Taylor, M. S.; Jacobsen,
E. N. Angew. Chem. Int. Ed. 2006, 45, 1520. (g) Marcelli, T.; van
Maarseveen, J. H.; Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 7496.
(h) Palomo, C.; Mielgo, A. Angew. Chem., Int. Ed. 2006, 45, 7876. (i) List,
B. Chem. Commun. 2006, 819. (j) Marigo, M.; Jøgensen, K. A. Chem.
Commun. 2006, 2001. (k) Connon, S. J. Chem.-Eur. J. 2006, 12, 5418. (l)
Doyle, A. G.; Jacobsen, E. N. Chem. ReV. 2007, 107, 5713. (m) Gaunt,
M. J.; Johnsson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery Today
2007, 12, 8. (n) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47,
4638. (o) Connon, S. J. Synlett 2009, 354. (p) Marcelli, T.; Hiemstra, H.
Synthesis 2010, 8, 1229.
(8) For some selected reported examples, see: (a) Koichi, M.; Terada,
M.; Hiroshi, M. Angew. Chem., Int. Ed. 2002, 41, 3554. (b) Taylor, M. S.;
Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204. (c) Austin, J. F.;
Kim, S. G.; Sinz, C. J.; Xiao, W.-J.; MacMillan, D.W. C. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 5482. (d) Li, H.-M.; Wang, Y.; Tang, L.; Wu, F.-H.;
Liu, X.-F.; Guo, C.-Y.; Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed.
2005, 44, 105. (e) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto,
Y. J. Am. Chem. Soc. 2005, 127, 119. (f) Tan, B.; Chua, P. J.; Li, Y.; Zhong,
G. Org. Lett. 2008, 10, 2437. (g) Tan, B.; Shi, Z.; Chua, P. J.; Zhong, G.
Org. Lett. 2008, 10, 3425. (h) Tan, B.; Chua, P. J.; Zeng, X.; Lu, M.; Zhong,
G. Org. Lett. 2008, 10, 3489.
(5) For general reviews of organocatalysis, see: (a) Melchiorre, P.;
Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
(b) Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. (c) Gaunt, M. J.;
Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery Today 2007,
2, 8.
(9) For some related examples, see: (a) Luo, J.; Xu, L.-W.; Hay, R. A. S.;
Lu, Y. Org. Lett. 2009, 11, 437. (b) Murai, K.; Fukushima, S.; Hayashi, S.;
Takahara, Y.; Fujioka, H. Org. Lett. 2010, 12, 964. (c) Kim, D. Y.; Park,
E. J. Org. Lett. 2002, 4, 545. (d) Lu, M.; Zhu, D.; Lu, Y.; Zeng, X.; Tan,
B.; Xu, Z.; Zhong, G. J. Am. Chem. Soc. 2009, 131, 4562. (e) Hatano, M.;
Horibe, T.; Ishihara, K. J. Am. Chem. Soc. 2010, 132, 56. (f) Okino, T.;
Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005,
127, 119. (g) Zhang, Z. -H.; Dong, X. -Q.; Chen, D.; Wang, C. -J.
Chem.-Eur. J. 2008, 14, 8780. (h) Capuzzi, M.; Perdicchia, Jørgensen,
D. K. A. Chem.-Eur. J. 2008, 14, 128. (i) Ooi, T.; Miki, T.; Taniguchi,
M.; Shiraishi, M.; Takeuchi, M.; Maruoka, K. Angew. Chem., Int. Ed. 2003,
42, 3796. (j) Kieltsch, I.; Eisenberger, P.; Togni, A. Angew. Chem., Int.
Ed. 2007, 46, 754. (k) Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74,
5734. (l) Bartoli, G.; Bosco, M.; Carlone, A.; Cavalli, A.; Locatelli, M.;
Mazzanti, A.; Ricci, P.; Sambri, L.; Melchiorre, P. Angew. Chem., Int. Ed.
2006, 45, 4966.
(6) For selected reviews involving asymmetric organocatalytic aldehyde
and ketone activations in the last couple of years, see: (a) Nielsen, M.;
Jacobsen, C. B.; Holub, N.; Paixao, M. W.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2010, 49, 2668. (b) Nunez, M. G.; Garcia, P.; Moro, R. F.; Diez,
D. Tetrahedron 2010, 66, 2089. (c) Sohtome, Y.; Nagasawa, K. Synlett
2010, 1, 1. (d) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. ReV. 2009, 38,
2178. (e) Dohi, T.; Kita, Y. Chem. Commun. 2009, 16, 2073. (f) Connon,
S. J. Synlett 2009, 3, 354. (g) Pellissier, H. Tetrahedron 2009, 65, 2839.
(h) Trost, B. M.; Brindle, C. Chem. Soc. ReV. 2010, 39, 1600.
(7) For selected examples involving aldehyde activations in recent years,
see: (a) Reyes, E.; Jiang, H.; Milelli, A.; Elsner, P.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2007, 46, 9202. (b) MacMillan, D. W. C. Nature 2008,
455, 304. (c) Carlone, A.; Carbera, S.; Marigo, M.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2007, 46, 1101. (d) de Figueiredo, R. M.; Christmann, M.
Eur. J. Org. Chem. 2007, 2575. (e) Houk, K. N.; Cheong, P. H.-Y. Nature
2008, 455, 309. (f) Dine´r, P.; Kjærsgaard, A.; Lie, M. A.; Jørgensen, K. A.
Chem.-Eur. J. 2008, 14, 122. (g) Melchiorre, P.; Marigo, M.; Carlone,
A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138. (h) Zhao, G.-L.;
Rios, R.; Vesely, J.; Eriksson, L.; Co´rdova, A. Angew. Chem., Int. Ed. 2008,
47, 8468. (i) Nicewicz, D.; MacMillan, D. W. C. Science 2008, 322, 77. (j)
Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037. (k) Bertelsen, S.;
Johansen, R. L.; Jørgensen, K. A. Chem. Commun. 2008, 3016. (l) de
Figueiredo, R. M.; Fro¨hlich, R.; Christmann, M. Angew. Chem., Int. Ed.
2008, 47, 1450. (m) Barbas, C. F., III Angew. Chem., Int. Ed. 2008, 47, 42.
(n) Carpenter, J.; Northrup, A. B.; Chug, M.; Wiener, J. J. M.; Kim, S.-G.;
MacMillan, D. W. C. Angew. Chem., Int. Ed. 2008, 47, 3568. (o) Dondoni,
A.; Massi, M. Angew. Chem., Int. Ed. 2008, 47, 4638. (p) Franze´n, J.;
Fischer, A. Angew. Chem., Int. Ed. 2009, 48, 787. (q) Ishikawa, H.; Suzuki,
T.; Hayashi, Y. Angew. Chem., Int. Ed. 2009, 48, 1304.
(10) Hermann, K.; Wynberg, H. J. Org. Chem. 1979, 44, 2238.
(11) Sasai, H.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116,
1571.
(12) (a) Nakajima, M.; Yamaguchi, Y.; Hashimoto, S. Chem. Commun.
2001, 1596. (b) Nakajima, M.; Yamamoto, S.; Yamaguchi, Y.; Nakamura,
S.; Hashimoto, S. Tetrahedron 2003, 59, 7307. (c) Ogawa, C.; Kizu, K.;
Shimizu, H.; Takeuchi, M.; Kobayashi, S. Chem. Asian J. 2006, 1-2, 121.
(13) (a) Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc.
2002, 124, 11240. (b) Hamashima, Y.; Hotta, D.; Umebayashi, N.; Tsuchiya,
Y.; Suzuki, T.; Sodeoka, M. AdV. Synth. Catal. 2005, 347, 1576.
(14) Santoro, F.; Althaus, M.; Bonaccorsi, C.; Gischig, S.; Mezzetti, A.
Organometallics 2008, 27, 3866.
(15) Ooi, T.; Miki, T.; Taniguchi, M.; Shiraishi, M.; Takeuchi, M.;
Maruoka, K. Angew. Chem., Int. Ed. 2003, 42, 3796.
(16) Wu, F.; Li, H.; Hong, R.; Deng, L. Angew. Chem., Int. Ed. 2006,
45, 947.
Org. Lett., Vol. 12, No. 22, 2010
5219