Organic Letters
Letter
Furthermore, it was noticed that addition of water (10 equiv)
with DMSO increased the reactivity, and the reaction had gone
to completion in 5 h, whereas the reaction with dry DMSO under
N2 atmosphere decreased the reactivity and the reaction took 13
h for completion. These reactions are evidence for involvement
of residual water in DMSO or adventitious water in the reaction
medium.
ACKNOWLEDGMENTS
■
We thank the DST New Delhi (Project No. SB/S1/OC-72/
2013) for financial support for this project. S.S. thanks
IITMadras for a fellowship. P.M. thanks DST for a fellowship.
REFERENCES
■
(1) (a) Sulphur- Containing Drugs and Related Organic Compounds;
Damani, L. A., Ed.; Wiley: New York, 1989. (b) Clayden, J.; MacLellan,
P. Beilstein J. Org. Chem. 2011, 7, 582.
From the above observations, a possible mechanism was
proposed as shown in Scheme 7. Oxidative addition of 2′-
(2) (a) Schneller, S. W. Thiochromanones and Related Compounds.
In Advances in Heterocyclic Chemistry; Katritzky, A. R., Boulton, A. J.,
Eds.; Academic Press: New York, 1975; Vol. 18. (b) Balint, J.; Bognar,
R.; Rakosi, M. Chemistry of Sulfur Containing Flavonoids. In Studies in
Organic Chemistry, 19 (Organic Sulfur Chemistry); Bernardi, F.,
Csizmadia, I. G., Mangini, A., Eds.; Elsevier: Amsterdam, 1985.
(c) Nakazumi, H.; Ueyama, T.; Kitao, T. J. Heterocycl. Chem. 1985,
22, 1593. (d) Lee, J. I.; Lee, J. H. Food Sci. Biotechnol. 2014, 23, 957.
(3) (a) Wang, H. K.; Bastow, K. F.; Cosentino, L. M.; Lee, K. H. J. Med.
Chem. 1996, 39, 1975. (b) Choi, E. J.; Lee, J. I.; Kim, G. H. Int. J. Mol.
Med. 2012, 29, 252.
Scheme 7. Proposed Mechanism
(4) (a) Kaye, P. T.; Mphahlele, M. J. Synth. Commun. 1995, 25, 1495.
(b) Robillard, B.; Slaby, H. M.; Lindsay, D. A.; Ingold, K. U. J. Org. Chem.
1986, 51, 1700. (c) Dike, S. Y.; Ner, D. H.; Kumar, A. Synlett 1991, 443.
(d) Aramaki, Y.; Seto, M.; Okawa, T.; Oda, T.; Kanzaki, N.; Shiraishi, M.
Chem. Pharm. Bull. 2004, 52, 254. (e) Cui, D. M.; Kawamura, M.;
Shimada, S.; Hayashi, T.; Tanaka, M. Tetrahedron Lett. 2003, 44, 4007.
(5) Kumar, P.; Rao, A. T.; Pandey, B. Synth. Commun. 1994, 24, 3297.
(6) (a) Konieczny, M. T.; Horowska, B.; Kunikowski, A.; Konopa, J.;
Wierzba, K.; Yamada, Y.; Asao, T. J. Org. Chem. 1999, 64, 359.
(b) Sakirolla, R.; Yaeghoobi, M.; Rahman, N. A. Monatsh. Chem. 2012,
143, 797.
(7) Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646.
(8) Kobayashi, K.; Kobayashi, A.; Tanmatsu, M. Heterocycles 2012, 85,
919.
(9) (a) Organosulfur Chemistry in Asymmetric Synthesis; Toru, T., Bolm,
C., Eds.; Wiley−VCH: Weinheim, 2008. (b) Bichler, P.; Love, J. A. Top.
Organomet. Chem. 2010, 31, 39.
(10) (a) Kondo, T.; Mitsudo, T. A. Chem. Rev. 2000, 100, 3205.
(b) Lyons, T. W.; Sanford. Chem. Rev. 2010, 110, 1147. (c) Beletskaya, I.
P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(11) Selected publications: (a) Itoh, T.; Mase, T. Org. Lett. 2007, 9,
3687. (b) Ma, D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew.
Chem., Int. Ed. 2009, 48, 4222. (c) Zhang, X.; Zeng, W.; Yang, Y.; Huang,
H.; Liang, Y. Org. Lett. 2014, 16, 876. (d) Dang, P.; Zeng, W.; Liang, Y.
Org. Lett. 2015, 17, 34. (e) Hou, C.; He, Q.; Yang, C. Org. Lett. 2014, 16,
5040. (f) Sun, L. L.; Deng, C. L.; Tang, R. Y.; Zhang, X. G. J. Org. Chem.
2011, 76, 7546. (g) Yang, X.; Li, S.; Liu, X.; Jiang, Y.; Fu, H. RSC Adv.
2012, 2, 6549. (h) You, W.; Yan, X.; Liao, Q.; Xi, C. Org. Lett. 2010, 12,
3930. (i) Wang, F.; Chen, C.; Deng, G.; Xi, C. J. Org. Chem. 2012, 77,
4148. (j) Qiao, Z.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.; Li, Y.; Jiang, X. Org.
Lett. 2013, 15, 2594. (k) Qiao, Z.; Wei, J.; Jiang, X. Org. Lett. 2014, 16,
1212. (l) Li, Y.; Pu, J.; Jiang, X. Org. Lett. 2014, 16, 2692. (m) Zhang, Y.;
Li, Y.; Zhang, X.; Jiang, X. Chem. Commun. 2015, 51, 941. (n) Liu, H.;
Jiang, X. Chem. - Asian J. 2013, 8, 2546.
iodochalcone with copper acetate may give intermediate A,
which in the presence of potassium ethyl xanthate leads to
intermediate B. The reductive elimination of intermediate B
provides intermediate C, which was isolated in less polar solvent.
Then, intermediate C undergoes Michael addition with the help
of copper acetate and potassium ethyl xanthate to give the
product. However, a detailed mechanistic study and application
of this newly developed methodology and its asymmetric version
are in progress.
In conclusion, we have developed an efficient domino process
for the synthesis of thioflavanones from 2′-iodochalcone using
copper catalyst without addition of any external ligand and
xanthate as the sulfur precursor. The domino reaction proceeds
through in situ incorporation of sulfur by concomitant formation
of two carbon−sulfur bonds to provide thioflavanones in
excellent yield. Thioflavanones were also synthesized from 2′-
bromochalcones and derivatized to other important organic
molecules. This method can be a general approach for the
synthesis of thioflavanones as the reaction requires easily
accessible starting materials, avoids the unpleasant smell of
thiol precursor, uses inexpensive copper catalyst, and provides
excellent yield.
ASSOCIATED CONTENT
* Supporting Information
■
(12) (a) Prasad, D. J. C.; Naidu, A. N.; Sekar, G. Tetrahedron Lett. 2009,
50, 1411. (b) Prasad, D. J. C.; Sekar, G. Org. Lett. 2011, 13, 1008.
(c) Prasad, D. J. C.; Sekar, G. Org. Biomol. Chem. 2013, 11, 1659.
S
The Supporting Information is available free of charge on the
Detailed experimental procedures, characterization data,
and copies of NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX