˚
Table 1 Selected chemical shifts (ppm), bond lengths (A), and dihedral
Notes and references
angles (◦)
§ Crystal data for [2·0.5(C7H8)]. C67.5H142Si16, M = 1403.25, monoclinic,
3
˚
˚
2-Aa
6
a = 18.524(2), b = 12.0037(14), c = 40.568(5) A, U = 8836.5(19) A , T =
103(2) K, space group P21/c (no. 14), Z = 4, 80 148 reflections measured,
15 370 independent reflections (Rint = 0.0709), R1 = 0.0441 [I > 2s(I)],
wR2 = 0.1284 (all data).
2
d Sib
57.1
61.40, 63.43
8.40, 8.33
8.02, 8.06
2.245
1.812
1.813
-10.1
dH(1)b
7.73–7.79 (m)
7.61–7.68 (m)
2.2334(7)
1.8047(19)
1.806(2)
1.377(3)
1.372(3)
6.64–6.71 (m)
6.12–6.19 (m)
2.3777(7)
1.862(2)
Crystal data for [6·C7H8·C6H14]. C77H160O2Si16, M = 1567.49, triclinic, a =
dH(2)b
3
˚
˚
16.8221(2), b = 17.7685(2), c = 18.7611(2) A, U = 4879.28(10) A , T =
dSi(1)–Si(2)
dSi(1)–C(1)
dSi(2)–C(4)
dC(1)–C(2)
dC(3)–C(4)
dC(2)–C(3)
∠Ar–Si–Si–Ar
¯
103(2) K, space group P1 (no. 2), Z = 2, 40 744 reflections measured,
16 924 independent reflections (Rint = 0.0296), R1 = 0.0452 [I > 2s(I)],
1.857(2)
1.342(3)
1.343(3)
1.467(3)
wR2 = 0.1244 (all data).
1.383
1.383
1 (a) A. Sekiguchi, R. Kinjo and M. Ichinohe, Science, 2004, 305, 1755–
1757; (b) N. Wiberg, S. K. Vasisht, G. Fischer and P. Mayer, Z. Anorg.
Allg. Chem., 2004, 630, 1823–1828.
1.400(3)
45.6(2)
1.414
60.59710
18.16(19)
2 (a) A. Sekiguchi, M. Ichinohe and R. Kinjo, Bull. Chem. Soc. Jpn.,
2006, 79, 825–832; (b) R. Kinjo, M. Ichinohe and A. Sekiguchi, J. Am.
Chem. Soc., 2007, 129, 26–27; (c) R. Kinjo, M. Ichinohe, A. Sekiguchi,
N. Takagi, M. Sumimoto and S. Nagase, J. Am. Chem. Soc., 2007, 129,
7766–7767; (d) K. Takeuchi, M. Ichinohe and A. Sekiguchi, J. Am.
Chem. Soc., 2008, 130, 16848–16849; (e) K. Takeuchi, M. Ichinohe, A.
Sekiguchi, J.-D. Guo and S. Nagase, Organometallics, 2009, 28, 2658–
2660; (f) A. Sekiguchi, R. Kinjo and M. Ichinohe, Synth. Met., 2009,
159, 773–775; (g) K. Takeuchi, M. Ichinohe, A. Sekiguchi, J.-D. Guo
and S. Nagase, J. Phys. Org. Chem., 2010, 23, 390–394; (h) K. Takeuchi,
M. Ikoshi, M. Ichinohe and A. Sekiguchi, J. Am. Chem. Soc., 2010, 132,
930–931.
3 (a) T. Sasamori, K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y.
Hosoi, Y. Furukawa and N. Tokitoh, J. Am. Chem. Soc., 2008, 130,
13856–13857; (b) T. Sasamori, J. S. Han, K. Hironaka, N. Takagi, S.
Nagase and N. Tokitoh, Pure Appl. Chem., 2010, 82, 603–612; (c) J. S.
Han, T. Sasamori, Y. Mizuhata and N. Tokitoh, J. Am. Chem. Soc.,
2010, 132, 2546–2547.
a For calculations, 2,6-bis[bis(trimethylsilyl)methyl]benzene group was
substituted instead of Bbt; structural optimizations: B3PW91/6-311G(3d)
for Si, 6-31G(d) for C, H; GIAO calculations: B3PW91/6-311+G(3df) for
Si, 6-311G(2d,p) for C, H. b 300 MHz for 1H and 59 MHz for 29Si; C6D6
was used as a solvent for 2 and 6.
shifts of the central silicon atoms of 2-A are close to the signal
observed from 2 (d 57.1). As expected, a 29Si NMR signal of
the ring Si atoms of 6 was observed at highly upfield region
(d -10.1). The central ring protons of 2 were observed more than
1 ppm downfield compared to 6. These downfield shifts should be
interpreted as a result of ring current effect of the 1,2-disilabenzene
ring. Although, the central rings of 2 and 6 have structural
similarities, remarkable differences in the bond distances of their
central rings were observed. Compared to 6, 2 has significantly
shortened Si–C and C(2)–C(3) bond distances, which can be
interpreted as indicative of its aromatic property. Furthermore, the
good agreement in bond distances with the theoretical calculations
supports the delocalization of p-electrons of 2. The calculated
NICS(1) (nucleus-independent chemical shift)9 values of 2-A are
-8.15 and -8.14 of which the significant negative values provide
evidence for its aromaticity.
4 (a) N. Tokitoh, K. Wakita, R. Okazaki, S. Nagase, P. v. R. Schleyer
and H. Jiao, J. Am. Chem. Soc., 1997, 119, 6951–6952; (b) K. Wakita,
N. Tokitoh, R. Okazaki and S. Nagase, Angew. Chem., Int. Ed., 2000,
39, 634–636; (c) K. Wakita, N. Tokitoh, R. Okazaki, N. Takagi and
S. Nagase, J. Am. Chem. Soc., 2000, 122, 5648–5649; (d) N. Tokitoh,
Acc. Chem. Res., 2004, 37, 86–94; (e) N. Tokitoh, Bull. Chem. Soc. Jpn.,
2004, 77, 429–441.
5 C. Cui, M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 2004, 126,
5062–5063.
6 (a) M. J. Fink, M. J. Michalczyk, K. J. Haller, R. West and J. Michl,
Organometallics, 1984, 3, 793–800; (b) S. Masamune, S. Murakami,
J. T. Snow, H. Tobita and D. J. Williams, Organometallics, 1984, 3,
333–334; (c) H. Watanabe, K. Takeuchi, N. Fukawa, M. Kato, M.
Goto and Y. Nagai, Chem. Lett., 1987, 1341–1344; (d) H. Suzuki, N.
Tokitoh, R. Okazaki, J. Harada, K. Ogawa, S. Tomoda and M. Goto,
Organometallics, 1995, 14, 1016–1022.
Gathering all spectral and structural features of 2 discussed
above, it is clear that 2 has delocalized p-electrons. Because
2 is the first example of 1,2-disilabenzene having the trans-
bent structural feature, it will be interesting to study how the
1
conjugation takes place through a trans-bent bond. In H and
13C NMR spectra, two independent signals were observed for the
SiMe3 groups at the ortho-positions of Bbt groups even at 70 ◦C,
suggesting that 2 retains the trans-bent conformation even in warm
solution.11
7 (a) R. S. Grev and H. F. Schaefer, III, J. Am. Chem. Soc., 1987, 109,
6577–6585; (b) H. B. Yokelson, A. J. Millevolte, B. R. Adams and R.
West, J. Am. Chem. Soc., 1987, 109, 4116–4118; (c) K. L. McKillop, G.
R. Gillette, D. R. Powell and R. West, J. Am. Chem. Soc., 1992, 114,
5203–5208; (d) A. J. Millevolte, D. R. Powell, S. G. Johnson and R.
West, Organometallics, 1992, 11, 1091–1095.
In summary, the 1,2-diaryldisilyne 1 showed high reactivity
with alkynes, especially unhindered alkynes. Both polar and non-
polar alkynes reacted with 1 to give 1,2-disilabenzene as the major
product. Crystal structure analysis showed that the central ring of
1,2-diaryl-1,2-disilabenzene 2 is almost planar, and most notably,
the Si–Si bond has significant trans-bent character. Evidence
supporting the aromatic structure of 2 was collected by both
experimental and theoretical means.
8 The sum of the internal bond angles for a formal 6-membered ring
connected through Si(1)–C(1)–C(2)–C(3)–C(4)–Si(2) is 718.8◦.
˚
9 Reverse signed magnetic shielding computed at 1 A above the ring
center as a probe of aromaticity, see: (a) P. v. R. Schleyer, C. Maerker,
A. Dransfeld, H. Jiao and N. J. R. v. E. Hommes, J. Am. Chem. Soc.,
1996, 118, 6317–6318; (b) P. v. R. Schleyer, H. Jiao, N. J. R. v. E.
Hommes, V. G. Malkin and O. L. Malkina, J. Am. Chem. Soc., 1997,
119, 12669–12670; (c) P. v. R. Schleyer, M. Manoharan, Z.-X. Wang,
B. Kiran, H. Jiao, R. Puchta and N. J. R. v. E. Hommes, Org. Lett.,
2001, 3, 2465–2468.
10 The theoretically optimized structure of the less hindered model, 1,2-
diphenyl-1,2-disilabenzene, exhibits completely planar structure with
C(Ph)–Si–Si–C(Ph) torsion angle of 0◦, suggesting the trans-bent
structure of 2 would be due to the severe steric repulsion of extremely
bulky Bbt groups.
11 When a Bbt group is connected directly to a chiral center, the two
trimethylsilyl groups at the ortho-benzyl position are in diastereomeri-
cally non-identical situation in NMR spectroscopy, see ref. 3a.
Acknowledgements
This work was supported by Grants-in Aid (17GS0207 and
20036024) and the Global COE Program from the Ministry of
Education, Culture, Sports, Science and Technology (MEXT),
Japan.
9240 | Dalton Trans., 2010, 39, 9238–9240
This journal is
The Royal Society of Chemistry 2010
©