10.1002/anie.201907837
Angewandte Chemie International Edition
COMMUNICATION
[14] S. D. Schimler, M. A. Cismesia, P. S. Hanley, R. D. J. Froese, M. J.
Jansma, D. C. Bland, M. S. Sanford J. Am. Chem. Soc. 2017, 139, 1452.
[15] S. D. Schimler, R. D. J. Froese, D. C. Bland, M. S. Sanford J. Org. Chem.
2018, 83, 11178-11190.
[16] a) A. Kaga, H. Hayashi, H. Hakamata, M. Oi, M. Uchiyama, R. Takita, S.
Chiba Angew. Chem. Int. Ed. 2017, 56, 1180; Angew. Chem. 2017, 129,
11969. b) J. Mao, Z. Wang, X. Xu, G. Liu, R. Jiang, H. Guan, Z. Zheng,
P. J. Walsh Angew. Chem. Int. Ed. 2019, 58, 11033; Angew. Chem. 2019,
131, 11149.
[17] X.-W. Liu, C. Zarate, R. Martin Angew. Chem. Int. Ed. 2019, 58, 2064;
Angew. Chem. 2019, 131, 2086.
[18] Y. Mauya, Y. Kawashima, T. Kodama, N. Chatani, M. Tobisu Synlett
10.1055/s-0037-1611974.
bromides. DFT calculations confirmed that this catalytic
cyclization proceeds in a concerted manner. In addition, the
formation of a Cipso-Cβ bond in the transition state results in a
significant stereoelectronic interaction with the antibonding orbital
of the Cipso-F bond, which stabilizes the transition state for this
concerted cyclization process. Further investigations of catalytic
reactions using NHCs with strong electron-donating ability are
currently underway in our laboratory.
[19] J. Clayden, J. Dufour, D. M. Grainger, M. Helliwell J. Am. Chem. Soc.
2007, 129, 7488.
[20] D. J. Leonard, J. W. Ward, J. Clayden Nature 2018, 562, 105.
[21] Kirby, A. J. Stereoelectronic Effects; Oxford Chemistry Primers: Oxford,
1996, pp 68-69.
Acknowledgements
This work was supported by Scientific Research on Innovative
Area "Hybrid Catalysis" (18H04649) from MEXT, Japan. MT
thanks the Hoansha Foundation for their financial support. KY
thanks JSPS Research Fellowship for Young Scientists. We also
thank the Instrumental Analysis Center, Faculty of Engineering,
Osaka University, for their assistance with HRMS and Dr.
Yoshihiro Masuya and Dr. Takuya Kodama for suggestions
regarding DFT calculations.
[22] D. M. Flanigan, F. Romanov-M., N. A. White, T. Rovis Chem. Rev. 2015,
115, 9307.
[23] M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius Nature 2014, 510,
485.
[24] C. Zhang, J. F. Hooper, D. W. Lupton ACS Catal. 2017, 7, 2583.
[25] a) X.-Y. Chen, S. Ye Org. Biomol. Chem., 2013, 11, 7991. b) S.-I.
Matsuoka, Y. Ota, A. Washio, A. Katada, K. Ichioka, K. Takagi, M. Suzuki
Org. Lett. 2011, 13, 3722. c) A. T. Biju, M. Padmanaban, N. E. Wurz, F.
Glorius Angew. Chem. Int. Ed. 2011, 50, 8412; Angew. Chem. 2011, 123,
8562. d) M. Schedler, N. E. Wurz, C. G. Daniliuc, F. Glorius Org. Lett.
2014, 16, 3134. e) O. Rajachan, M. Paul, V. R. Yatham, J.-M. Neudorfl,
K. Kanokmedhakul, S. Kanokmedhakul, A. Berkessel, Tetrahedron Lett.
2015, 56, 6537. f) Y. Nakano, D. W. Lupton, Angew. Chem. Int. Ed. 2016,
55, 3135; Angew. Chem. 2016, 128, 3187. g) L. Scott, Y. Nakano, C.
Zhang, D. W. Lupton Angew. Chem. Int. Ed. 2018, 57, 10299; Angew.
Chem. 2016, 130, 10456.
Keywords: catalytic concerted nucleophilic aromatic substitution
• N-heterocyclic carbene • aryl fluoride • DFT calculations •
umpolung
[26] C. Fischer, S. W. Smith, D. A. Powell, G. C. Fu J. Am. Chem. Soc. 2006,
128, 1472.
[27] Y. Suzuki, T. Toyota, F. Imada, M. Sato, A. Miyashita Chem. Commun.
2003, 39, 1314.
[28] D. Janssen-Mueller, S. Singha, F. Lied, K. Gottschalk, F. Glorius Angew.
Chem. Int. Ed. 2017, 56, 6276; Angew. Chem. 2017, 129, 6373.
[29] S. O. Simonetti, E. L. Larghi, T. S. Kaufman Nat. Prod. Rep. 2016, 33,
1425.
[30] C. B. M. Poulie, L. Bunch ChemMedChem 2013, 8, 205.
[31] E. E. Kwan, Y. Zeng, H. A. Besser, E. N. Jacobsen Nat. Chem. 2018, 10,
917.
[32] M. Schlosser, R. Ruzziconi Synthesis 2010, 13, 2111.
[33] C. Xudong, Z. Yifang, C. Yin, Q. Yinli, Y. Minquan, X. Xiangqing, L. Xin,
L. Bi-Feng, Z. Liangren, Z. Guisen, J. Med. Chem. 2018, 61, 10017.
[34] M. M. Abelman, T. Oh, L. E. Overman J. Org. Chem. 1987, 52, 4130.
[35] a) L. Zhao, X. Y. Chen, S. Ye, Z.-X. Wang J. Org. Chem. 2011, 76, 2733.
b) The first experimental observation of 1,4-addition of NHC: D. Enders,
K. Breuer, G. Raabe, J. Runsink, H. J. Teles, J.-P. Melder, K. Ebel, S.
Brode Angew. Chem. Int. Ed. 1995, 34, 1021; Angew. Chem. 1995, 107,
1119.
[1]
a) Brückner, R. In Organic Mechanisms: Reactions, Stereochemistry and
Synthesis; Harmata, M., Eds.; Springer: Berlin, 2010; chap. 2 and chap.
5.
D. G. Brown, J. Boström J. Med. Chem. 2016, 59, 4443.
F. Terrier Chem. Rev. 1982, 82, 77.
F. Terrier Modern Nucleophilic Aromatic Substitution; Wiley: New York,
2013; pp 1-94.
G. O. Jones, A. Al Somaa, J. M. O'Brien, H. Albishi, H. A. Al-Megren, A.
M. Alabdulrahman, F. D. Alsewailem, J. L. Hedrick, J. E. Rice, H. W. Horn
J. Org. Chem. 2013, 78, 5436.
J. Murphy, S. Rohrbach, J. A. Smith, J. H. Pang, D. L. Poole, T. Tuttle,
S. Chiba Concerted nucleophilic aromatic substitution reactions. Angew.
Chem. Int. Ed. 10.1002/anie.201902216
M. N. Glukhovtsev, R. D. Bach, S. Laiter, J. Org. Chem. 1997, 62, 4036.
S. E. Fry, N. J. Pienta J. Am. Chem. Soc. 1985, 107, 6399.
H. Handel, M. A. Pasquini, J. L. Pierre, Tetrahedron 1980, 36, 3205-3208.
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10] D. Y. Ong, C. Tejo, K. Xu, H. Hirao, S. Chiba Angew. Chem. Int. Ed. 2017,
56, 1840; Angew. Chem. 2017, 129, 1866.
[11] P. Tang, W. Wang, T. Ritter J. Am. Chem. Soc. 2011, 133, 11482.
[12] C. N. Neumann, J. M. Hooker, T. Ritter Nature 2016, 534, 369.
[13] C. N. Neumann, T. Ritter Acc. Chem. Res. 2017, 50, 2822.
[36] a) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. R. Schleyer
Chem. Rev. 2005, 105, 3842. b) M. Mauksch, S. B. Tsogoeva Chem. Eur.
J. 2019, 25, 7457.
[37] J. P. Foster, F. Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211.
This article is protected by copyright. All rights reserved.