Access to Biologically Active Pyrroles and Indoles
A R T I C L E S
Figure 2. Representative bromopyrrole alkaloids.
These indole-fused heterocycles are present in a large number
of drug candidates as well as medicinal chemistry lead com-
pounds.11 Recently, these compounds have been patented for
their H3 antagonist activity, which can be used to treat obesity,
cardiovascular disorders, Alzheimer’s disease, and other neu-
rological disorders.10
Figure 3. Representative medicinal chemistry lead compounds.
Due to the abundance of biologically active compounds that
contain a heterocycle-bearing 1,2 diamine (see eq 1 and Figures
2 and 3), the development of catalytic asymmetric methods to
generate these moieties is an important challenge. While many
asymmetric alkylation methods exist for functionalizing het-
erocycles at the carbon atom,12 relatively few examples are
known for the direct asymmetric alkylation at nitrogen. Chen
and co-workers reported an organocatalytic intermolecular
asymmetric N-alkylation of various substituted indoles with
Morita Baylis-Hillman carbonates.13 Likewise, Bandini et al.
have disclosed that cinchona alkaloid-derived catalysts can
facilitate enantioselective N-alkylations of indoles in an in-
tramolecular fashion.14 Most recently, Hartwig et al. reported
an elegant Ir-catalyzed chemo-, regio- and enantioselective
allylation of indoles with linear allyl carbonates.15 Our group
has utilized heterocycles as nitrogen nucleophiles in the Pd-
AAA in the context of natural product total syntheses.3 However,
no general method has yet been disclosed utilizing these
molecules as nucleophiles in the Pd-AAA.
The Pd-AAA can operate through a variety of mechanisms
to induce chirality. Unlike many other asymmetric transforma-
tions, the Pd-AAA can convert racemic starting materials to
enantioenriched products through a dynamic kinetic asymmetric
transformation (DYKAT).1e In contrast to a kinetic resolution,
which is limited to a maximum theoretical yield of 50% and
involves consumption of only one enantiomer of the starting
material, a DYKAT has a theoretical yield of 100%. In this
transformation, both enantiomers of the starting material are
present a significant synthetic challenge due to the presence of
numerous contiguous stereocenters, nitrogen-rich polar func-
tional groups, and sensitive pyrrole nuclei (Figure 2). Due to
their intriguing structures and biological activities, the bro-
mopyrrole alkaloids have been the target of numerous total
syntheses.6 The agelastatins contain a fused tetracyclic structure
and possess a variety of interesting biological activities including
nanomolar activities against several cancer cell lines.7 Palau’amine
possesses a strained hexacylic skeleton, flanked by eight
contiguous stereocenters and nine nitrogen atoms and has shown
antibiotic, antifungal, as well as immunosuppressant activity.8
Other bromopyrrole alkaloids, including longamide B and its
methyl ester, hanishin, agesamides A and B, and cyclooroidin
contain pyrrole-fused piperazinones, and possess significant
antibiotic and cytotoxic activities.9
Like the piperazinones found in pyrrole alkaloids, indole-
fused piperazinones and piperazines (Figure 3) have also shown
a broad array of biological activities.10 Indole-fused piperazi-
nones are known for their ability to act as conformationally rigid
peptidomimetics and have been shown to act as antagonists of
the histamine 3 (H3) receptor, which is expressed in the central
nervous system and controls histamine levels in the brain.10
(6) For a review on their total syntheses, see: (a) Weinreb, S. M. Nat.
Prod. Rep. 2007, 24, 931–948. (b) Christophersen, C. In The Alkaloids;
Brossi, A., Ed.; Academic Press.: Orlando, 1985; Vol. 24, pp 25-98.
(c) Hao, E.; Fromont, J.; Jardine, D.; Karuso, P. Molecules 2001, 6,
130–141.
(7) (a) D’Ambrosio, M.; Guerriero, A.; Debitus, C.; Ribes, O.; Pusset, J.;
Leroy, S.; Pietra, F. J. Chem. Soc., Chem. Commun. 1993, 1305–
1306. (b) D’Ambrosio, M.; Guerriero, A.; Chiasera, G.; Pietra, F. HelV.
Chim. Acta 1994, 77, 1895–1902. (c) D’Ambrosio, M.; Guerriero, A.;
Ripamonti, M.; Debitus, C.; Waikedre, J.; Pietra, F. HelV. Chim. Acta
1996, 79, 727–735. (d) Maijer, L.; Thunnissen, A. M.; White, A. W.;
Garnier, M.; Nikolic, M.; Tsai, L. H.; Walter, J.; Cleverley, K. E.;
Salinas, P. C.; Wu, Y. Z.; Biernat, J.; Mandelkov, E. M.; Kim, S. H.;
Pettit, G. R. Chem. Biol. 2000, 2, 51–63.
(10) (a) Hebeisen, P.; Mattei, P.; Muller, M.; Richter, H.; Roever, S.; Taylor,
S. PCT Int. Appl. WO 02/072584 A2, 2002. (b) Jolidon, S.;
Narquizian, R.; Norcross, R. D.; Pinard, E. PCT Int. Appl. WO US
2006/0128712 A1, 2006. (c) Nettekoven, M.; Plancher, J.-M.; Richter,
H.; Roche, O.; Taylor, S. PCT Int. Appl. WO US 2007/0135416 A1,
2007.
(11) Dinsmore, C. J.; Beshore, D. C. Org. Prep. Proced. 2002, 34, 367–
404.
(8) (a) Kinnel, R. B.; Gehrken, P.-H.; Scheuer, P. J. J. Am. Chem. Soc.
1993, 115, 3376–3377. (b) Seiple, I. B.; Su, S.; Young, I. S.; Lewis,
C. A.; Yamaguchi, J.; Baran, P. S. Angew. Chem., Int. Ed. 2010, 49,
1095–1098.
(12) For recent examples, see: (a) Austin, J. F.; Macmillan, D. W. C. J. Am.
Chem. Soc. 2002, 124, 1172–1173. (b) Evans, D. A.; Scheidt, K. A.;
Fandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem. Soc. 2003, 125,
10780–10781. (c) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006,
128, 6314–6315. (d) Trost, B. M.; Mu¨ller, C. J. Am. Chem. Soc. 2008,
130, 2438–2439.
(9) (a) Mancini, I.; Guella, G.; Amade, P.; Roussakis, C.; Pietra, F.
Tetrahedron Lett. 1997, 38, 6271–6274. (b) Umeyama, A.; Ito, S.;
Yuasa, E.; Arihara, S.; Yamada, T. J. Nat. Prod. 1998, 61, 1433–
1434. (c) Srinivasa Reddy, N.; Venkateswarlu, Y. Biochem. Syst. Ecol.
2000, 28, 1035–1037. (d) Fattorusso, E.; Taglialatela-Scafati, O.
Tetrahedron Lett. 2000, 41, 9917–9922. (e) Tsuda, M.; Yasuda, T.;
Fukushi, E.; Kawabata, J.; Sekiguchi, M.; Fromont, J.; Kobayashi, J.
Org. Lett. 2006, 8, 4235–4238.
(13) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew.
Chem., Int. Ed. 2009, 48, 5737–5740.
(14) Bandini, M.; Eichholzer, A.; Tragni, M.; Umani-Ronchi, A. Angew.
Chem., Int. Ed. 2008, 47, 3238–3241.
(15) Stanley, L. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2009, 48, 5737–
5740.
9
J. AM. CHEM. SOC. VOL. 132, NO. 44, 2010 15801