Organometallics 2010, 29, 6121–6124 6121
DOI: 10.1021/om100552h
Synthesis and Reactivity of [(PhB(CH2PPh2)3-K3P)Ru(NCMe)3]PF6 and
Its Potential as a Transfer Hydrogenation Catalyst
Jesse M. Walker,† Alex M. Cox,† Ruiyao Wang,‡ and Gregory J. Spivak*,†
†Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada, and
‡Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
Received June 4, 2010
Summary: The acetonitrile ligands in [(PhB(CH2PPh2)3-κ3P)-
Scheme 1
Ru(NCMe)3]PF6 (1) (which contains a facially coordinated
anionic tripodal phosphine ligand) are labile and are rapidly
replaced by other ligands, although the steric profile of the
phosphine ligand limits the size and the number of the incoming
ligands. Complex 1 and some of its derivatives proved tobe very
efficient and rapid transfer hydrogenation precatalysts and
yielded turnover frequencies(TOFs) greater thanthose typically
observed for most other ruthenium-based catalysts.
The success of the piano-stool complex [(η5-Cp)Ru-
(NCMe)3]PF6 as a versatile ruthenium precatalyst likely
1
can be traced to the substitutional lability of the acetonitrile
ligands,2 which allow it to serve as a convenient source of the
coordinatively unsaturated fragment {(η5-Cp)Ru}þ. Accord-
ingly, [(η5-Cp)Ru(NCMe)3]PF6 functions as a convenient
precursor to an arene activating group3 and has also proven
to be exceptionally useful in a diverse range of organic trans-
formations.4 Indeed, the importance of this compound might
also be gauged by its commercial availability, as well as by
the efforts of several research groups that have endeavored to
devise alternative synthetic strategies5 which are perhaps
more convenient than the original procedure.6
We report here the synthesis, chemistry, and catalytic activ-
ity of a structural counterpart of [(η5-Cp)Ru(NCMe)3]PF6,
which contains, in place of the cyclopentadienyl ligand, the
*To whom correspondence should be addressed. E-mail: greg.spivak@
lakeheadu.ca.
€
(1) Slugovc, C.; Ruba, E.; Schmid, R.; Kirchner, K.; Mereiter, K.
anionic tris(phosphino)borate ligand [PhB(CH2PPh2)3]- (herein
abbreviated as PhBP3).7 The PhBP3 ligand retains the essen-
tial properties of the ubiquitous cyclopentadienyl ligand (i.e.,
isoelectronic, anionic, and face-capping) yet also possesses
characteristics that are quite different (e.g., steric and elec-
tronic properties), and thus it is expected to impart different
chemical properties onto the metal center.7,8
Monatsh. Chem. 2000, 131, 1241.
€
€
(2) Luginbuhl, W.; Zbinden, P.; Pittet, P. A.; Armbruster, T.; Burgi,
H.-B.; Merbach, A. E.; Ludi, A. Inorg. Chem. 1991, 30, 2350.
(3) For example: (a) Semmelhack, M. F.; Chlenov, A. Top. Organo-
met. Chem. 2004, 7, 43. (b) Leone-Stumpf, D.; Lindel, T. Chem. Eur. J.
2001, 7, 3961. (c) Pearson, A. J.; Heo, J.-N. Tetrahedron Lett. 2000, 41,
5991. (d) Pearson, A. J.; Hwag, J.-J. Tetrahedron 2001, 57, 1489. (e) West,
C. W.; Rich, D. H. Org. Lett. 1999, 1, 1819. (f) Pearson, A. J.; Zhang, P.;
Bigan, G. J. Org. Chem. 1997, 62, 4536. (g) Pearson, A. J.; Zhang, P.; Lee, K.
J. Org. Chem. 1996, 61, 6581. (h) Dembek, A. A.; Fagan, P. J. Organome-
tallics 1996, 15, 1319. (i) Dembek, A. A.; Fagan, P. J. Organometallics 1995,
14, 3741. (j) Pearson, A. J.; Park, J. G.; Yang, S. H.; Chuang, Y.-H. J. Chem.
Soc., Chem. Commun. 1989, 1363. (k) Moriarty, R. M.; Ku, Y.-Y.; Gill, U. S.
Organometallics 1988, 7, 660.
The complex [(PhBP3-κ3P)Ru(NCMe)3]PF6 (1) was read-
ily prepared by reacting dimeric [(PhBP3-κ3P)RuCl]28a with
2 equiv of AgPF6 in a 1:1 mixture of acetonitrile and THF
and isolated as analytically pure, colorless crystals in moderate
yields (53%) after recrystallization (Scheme 1). The solid
form is air-stable; however, solutions of 1 prepared in the
(4) For example: (a) Machin, B. P.; Howell, J.; Mandel, J.; Blanchard,
N.; Tam, W. Org. Lett. 2009, 11, 2077. (b) Czekelius, C. Indian J. Chem. B
2009, 48, 1704. (c) Trost, B. M.; Gutierrer, A. C. Org. Lett. 2007, 9, 1473.
(d) Trost, B. M.; Huang, X. Chem. Asian J. 2006, 1, 469. (e) Tanaka, S.;
ꢀ
Saburi, H.; Kitamura, M. Adv. Synth. Catal. 2006, 348, 375. (f) Fernandez,
(7) (a) Peters, J. C.; Feldman, J. D.; Tilley, T. D. Organometallics
2001, 21, 4050. (b) Barney, A. A.; Heyduk, A. F.; Nocera, D. G. Chem.
Commun. 1999, 2379. (c) Peters, J. C.; Feldman, J. D.; Tilley, T. D. J. Am.
Chem. Soc. 1999, 121, 9871.
(8) (a) Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.
(b) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003,
125, 322. (c) Jenkins, D. M.; Di Bilio, A. M.; Allen, M. J.; Betley, T. A.;
Peters, J. C. J. Am. Chem. Soc. 2002, 124, 15336. (d) Jenkins, D. M.; Betley,
T. A.; Peters, J. C. J. Am. Chem. Soc. 2002, 124, 11238. (e) Peters, J. C.;
Feldman, J. D.; Tilley, T. D. Organometallics 2001, 21, 4065. (f) Shapiro,
I. R.; Jenkins, D. M.; Thomas, J. C.; Day, M. W.; Peters, J. C. Chem.
Commun. 2001, 2152.
I.; Hermatschweiler, R.; Pregosin, P. S. Organometallics 2006, 25, 323.
(g) Trost, B. M.; Shen, H. C.; Horne, D. B.; Toste, F. D.; Steinmetz, B. G.;
Koradin, C. Chem. Eur. J. 2005, 11, 2577. (h) Trost, B. M.; Rudd, M. T. J.
Am. Chem. Soc. 2005, 127, 4763. (i) Trost, B. M.; Rudd, M. T. J. Am. Chem.
Soc. 2002, 124, 4178. (j) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2002,
124, 5025. (k) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2001, 123, 8862.
(l) Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999, 40, 7739.
€
(5) (a) Kundig, E. P.; Monnier, F. R. Adv. Synth. Catal. 2004, 346,
901. (b) Trost, B. M.; Older, C. M. Organometallics 2002, 21, 2544.
(6) Schrenk, J. L.; McNair, A. M.; McCormick, F. B.; Mann, K. R.
Inorg. Chem. 1986, 25, 3501.
r
2010 American Chemical Society
Published on Web 10/25/2010
pubs.acs.org/Organometallics