C O M M U N I C A T I O N S
Table 3. Palladium-Catalyzed Coupling of Indium Homoenolates
Narasaka (Nanyang Technological University, NTU), Prof. Sunggak
Kim (NTU), Dr. Shunsuke Chiba (NTU) for helpful discussions,
and Dr. Yong-Xin Li (NTU) for X-ray support.
with Various Acid Chloridesa
Supporting Information Available: Experiment procedures, char-
1
acterization data of products, copies of H and 13C NMR spectra, and
CIF files. This material is available free of charge via the Internet at
entry
R1
R2
R3
product
yield (%)b
References
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Et
Et
Et
Et
Et
Et
Et
Et
Et
Et
Et
H
4-NO2C6H4
4-BrC6H4
4-ClC6H4
Ph
4-MeC6H4
4-OMeC6H4
2-naphthyl
2-thienyl
2-furyl
2a
2b
2c
2d
2e
2f
2g
2h
2i
84
61c
84
83
87
74
89
90
98
69
64
78
70
86
85
79
84
98
70
85
(1) For reviews concerning homoenolate chemistry, see: (a) Werstiuk, N. H.
Tetrahedron 1983, 39, 205. (b) Hoppe, D.; Hense, T. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2282. (c) Hoppe, D.; Marr, F.; Bruggemann, M. Top.
Organomet. Chem. 2003, 5, 61. (d) Kuwajima, I.; Nakamura, E. In
ComprehensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: New York, 1991; Vol. 2, p 441 and references cited therein. (e)
Kuwajima, I.; Nakamura, E. In Topics in Current Chemistry; Springer:
Berlin, 1990; Vol. 155, p 3.
(2) (a) Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1977, 99, 7360. (b)
Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 3368. (c)
Nakamura, E.; Shimada, J.-i.; Kuwajima, I. Organometallics 1985, 4, 641.
(d) Oshino, H.; Nakamura, E.; Kuwajima, I. J. Org. Chem. 1985, 50, 2802.
(e) Nakamura, E.; Oshino, H.; Kuwajima, I. J. Am. Chem. Soc. 1986, 108,
3745. (f) Nakamura, E.; Aoki, S.; Sekiya, K.; Oshino, H.; Kuwajima, I.
J. Am. Chem. Soc. 1987, 109, 8056. (g) Nakamura, E.; Kuwajima, I. J. Am.
Chem. Soc. 1985, 107, 2138. (h) Horiguehi, Y.; Nakamura, E.; Kuwajima,
I. J. Org. Chem. 1986, 51, 4323. (i) Nakamura, E.; Kuwajima, I. J. Am.
Chem. Soc. 1983, 105, 651. For the X-ray analysis of a titanium
homoenolate, see: (j) Cozzi, P. G.; Carofiglio, T.; Floriani, C. Organome-
tallics 1993, 12, 2845.
(3) (a) Tamaru, Y.; Ochiai, H.; Nakamura, T.; Yoshida, Z. Angew. Chem., Int.
Ed. Engl. 1987, 26, 1157. (b) Tamaru, Y.; Ochiai, H.; Nakamura, T.;
Yoshida, Z. Tetrahedron Lett. 1986, 27, 955. (c) Tamaru, Y.; Ochiai, H.;
Nakamura, T.; Tsubaki, K.; Yoshida, Z. Tetrahedron Lett. 1985, 26, 5559.
(d) Ochiai, H.; Tamaru, Y.; Tsubaki, K.; Yoshida, Z. J. Org. Chem. 1987,
52, 4418.
(4) For other selected typical methods for the synthesis of metal homoenolate
by Knochel et al., see: (a) Sidduri, A.; Rozema, M. J.; Knochel, P. J. Org.
Chem. 1993, 58, 2694. (b) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481.
(c) Goswami, R. J. Org. Chem. 1985, 50, 5907.
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Me
PhCH2CH2
PhCH2
2j
2k
2l
4-ClC6H4
Ph
4-MeC6H4
4-MeC6H4
4-MeC6H4
4-MeC6H4
4-MeC6H4
4-MeC6H4
4-MeC6H4
4-MeC6H4
4-MeC6H4
2m
2n
2o
2p
2q
2r
2s
2t
4-MeC6H4
2-thienyl
PhCH2
PhCH2CH2
n-pentyl
c-hexyl
Ph
a The reactions were carried out at reflux for 24 h using indium
homoenolate (0.3 mmol), acid chloride (0.5 mmol), and PdCl2(PPh3)2
(0.025 mmol) in THF (3 mL). b Isolated yield based on acid chloride as
limiting reagent. c With ∼5% impurity which cannot be purified.
(5) For reviews regarding the generation of a homoenolate intermediate with
the use of NHC catalysis, see: (a) Nair, V.; Vellalath, S.; Babu, B. P. Chem.
Soc. ReV. 2008, 37, 2691. For recent examples, see: (b) Sohn, S. S.; Rosen,
E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370. (c) Burstein, C.;
Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205. (d) He, M.; Bode, J. W.
Org. Lett. 2005, 7, 3131. (e) Nair, V.; Vellalath, S.; Poonoth, M.; Mohan,
R.; Suresh, E. Org. Lett. 2006, 8, 507. (f) Nair, V.; Poonoth, M.; Vellalath,
S.; Suresh, E.; Thirumalai, R. J. Org. Chem. 2006, 71, 8964. (g) Nair, V.;
Vellalath, S.; Poonoth, M.; Suresh, E. J. Am. Chem. Soc. 2006, 128, 8736.
(h) Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem.,
Int. Ed. 2007, 46, 3107. (i) Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W.
J. Am. Chem. Soc. 2007, 129, 3520. (j) Wadamoto, M.; Phillips, E. M.;
Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 10098. (k)
He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 418. (l) Nair, V.; Babu,
B. P.; Vellalath, S.; Suresh, E. Chem. Commun. 2008, 747. (m) Chan, A.;
Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334. (n) Phillips, E. M.;
Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2416. (o)
Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2740. (p) Seayad,
J.; Patra, P. K.; Zhang, Y.; Ying, J. Y. Org. Lett. 2008, 10, 953. (q) Sohn,
S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873. (r) He, M.; Struble, J. R.;
Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418.
3, entries 10-11). Moreover, the reactions of various indium
homoenolates with 4-methylbenzoyl chloride proceeded efficiently
to give the final products in good yields (Table 3, entries 12-20).
Finally, it is important to note that both of the two R groups attached
to the indium (R2InCl) can be efficiently transferred in the
palladium-catalyzed coupling with acid chloride.
In summary, a novel method for the synthesis of the first indium
homoenolate was achieved via the oxidative addition of InCl (or
In/InCl3) to enones in aqueous media. The indium homoenolate
was found to be water-tolerant and represents one of the few already
discovered organoindium complexes. The structure of one of the
indium homoenolates has been confirmed by single crystal X-ray
analysis. The method also provides an easy access to the synthesis
of a carbonyl-containing organoindium reagent and ketone-type
homoenolate which are not readily available by conventional
methods. The synthetic utility of the indium homoenolate was
demonstrated through the synthesis of 1,4-dicarbonyl compounds
via palladium-catalyzed coupling with acid chloride. It is important
to note that 1,4-dicarbonyl compounds are important intermediates
in organic synthesis which are difficult to construct using conven-
tional methods.15 The transformation of the enone to indium
homoenolate also represents one of the few Umpolung chemistries
of enone with inversion of its ꢀ-carbon polarity. Further studies
concerning other methods for the synthesis of indium homoenolates
and their synthetic utility in organic synthesis are currently in
progress.
(6) Takami, K.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Org.
Lett. 2001, 3, 1997.
(7) For the recent development of aryl and benzyl indium reagents which were
pioneered by Knochel et al., see: (a) Chen, Y. H.; Knochel, P. Angew.
Chem., Int. Ed. 2008, 47, 7648. (b) Chen, Y. H.; Sun, M.; Knochel, P.
Angew. Chem., Int. Ed. 2009, 48, 2236. (c) Papoian, V.; Minehan, T. J.
Org. Chem. 2008, 73, 7376. (d) Chupak, L. S.; Wolkowski, J. P.; Chantigny,
Y. A. J. Org. Chem. 2009, 74, 1388. (e) Fujiwara, N.; Yamamoto, Y. J.
Org. Chem. 1999, 64, 4095.
(8) Organic reactions in water; for reviews, see: (a) Li, C. J.; Chan, T. H.
Tetrahedron 1999, 55, 11149. (b) Li, C. J. Chem. ReV. 2005, 105, 3095.
(c) Li, C. J. Chem. ReV. 1993, 93, 2023. (d) Li, C. J.; Chen, L. Chem. Soc.
ReV. 2006, 35, 68. (e) Dallinger, D.; Kappe, C. O. Chem. ReV. 2007, 107,
2563. (f) Kobayashi, S.; Manabe, A. K. Acc. Chem. Res. 2002, 35, 209.
(g) Lindstrom, U. M. Chem. ReV. 2002, 102, 2751. (h) Li, C. J. Acc. Chem.
Res. 2002, 35, 533. (i) Li, C. J. Green Chem. 2002, 4, 1. (j) Miyabe, H.;
Naito, T. Org. Biomol. Chem. 2004, 2, 1267. (k) Herrer´ıas, C. I.; Yao,
X. Q.; Li, Z. P.; Li, C. J. Chem. ReV. 2007, 107, 2546. (l) Chauhan, K. K.;
Frost, C. G. J. Chem. Soc., Perkin Trans. 1 2000, 3015. (m) Babu, G.;
Perumal, P. T. Aldrichimica Acta 2000, 33, 16.
Acknowledgment. We gratefully acknowledge the Nanyang
Technological University, Ministry of Education Research Fund
Tier 2 (No. M45110000), and A*STAR SERC Grant (No.
0721010024) for the funding of this research. We also thank Prof.
Chi Wi Ong (National Sun Yat Sen University), Prof. Koichi
(9) For the formation of nickel-π-allyl complexes via oxidative addition of
nickel(0) to enones in the presence of Lewis acids, see: (a) Johnson, J. R.;
Tully, P. S.; Mackenzie, P. B.; Sabat, M. J. Am. Chem. Soc. 1991, 113,
6172. (b) Grisso, B. A.; Johnson, J. R.; Mackenzie, P. B. J. Am. Chem.
Soc. 1992, 114, 5160.
9
15854 J. AM. CHEM. SOC. VOL. 132, NO. 45, 2010