Journal of the American Chemical Society
Article
(54) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014,
114 (18), 9047.
(86) Kitamura, M.; Suga, S.; Oka, H.; Noyori, R. J. Am. Chem. Soc.
1998, 120 (38), 9800.
(55) Zi, W.; Wang, Y.-M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136
(87) Chen, Y. K.; Costa, A. M.; Walsh, P. J. J. Am. Chem. Soc. 2001,
(37), 12864.
123 (22), 5378.
(56) Bobbio, C.; Gouverneur, V. Org. Biomol. Chem. 2006, 4 (11),
2065.
(88) Noyori, R.; Suga, S.; Oka, H.; Kitamura, M. Chem. Rec. 2001, 1
(2), 85.
(57) Shibata, N.; Ishimaru, T.; Nakamura, S.; Toru, T. J. Fluorine
(89) Buono, F.; Walsh, P. J.; Blackmond, D. G. J. Am. Chem. Soc.
Chem. 2007, 128 (5), 469.
2002, 124 (46), 13652.
(58) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108 (9), PR1.
(59) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem.
Soc. Rev. 2010, 39 (2), 558.
(90) Oestreich, M.; Rendler, S. Angew. Chem., Int. Ed. 2005, 44 (11),
1661.
(91) Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005,
(60) Lectard, S.; Hamashima, Y.; Sodeoka, M. Adv. Synth. Catal.
2010, 352 (16), 2708.
44 (25), 3881.
̌
(92) Portada, T.; Roje, M.; Hamersa
2005, 46 (35), 5957.
(93) Dziedzic, P.; Zou, W.; Ibrahem, I.; Sunden
Tetrahedron Lett. 2006, 47 (37), 6657.
(94) Duan, W.-L.; Iwamura, H.; Shintani, R.; Hayashi, T. J. Am.
Chem. Soc. 2007, 129 (7), 2130.
̌
k, Z.; Zinic,
́
M. Tetrahedron Lett.
(61) Valero, G.; Companyo,
2018.
́
X.; Rios, R. Chem. - Eur. J. 2011, 17 (7),
́
, H.; Cordova, A.
́
(62) Ye, Z.; Zhao, G. Chimia 2011, 65 (12), 902.
(63) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015,
115 (2), 826.
(64) Li, D. R.; Murugan, A.; Falck, J. R. J. Am. Chem. Soc. 2008, 130
(1), 46.
(95) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007,
129 (49), 15398.
(65) (a) Although reaction rates were qualitatively greater in the
absence of activated molecular sieves, sieves were included in the
standard reaction conditions as their presence generally resulted in
more reproducible enantioselectivities. Additionally, toluene was used
as the only solvent for operational simplicity. See Supporting
Information for details. (b) For the entirety of this article, we have
defined the result in Figure 1B as the standard enantioselectivity (i.e.,
the (S)-catalyst affords the (S)-product). On the basis of this
convention, the predominant formation of the (R)-product was
considered “negative” when using the (S)-catalyst. Similarly, if use of
the (R)-catalyst results in the (S) enantiomer as the major product,
this result is considered “negative”. This convention was opted as it
better alerts the reader to the fact that the enantioselectivity inversion
is independent of the catalyst enantiomer used (as opposed to the (R)
and (S) terminology).
(66) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed.
2005, 44 (45), 7424.
(67) Tiago Menezes Correia, J. Synlett 2015, 26 (03), 416.
(68) Miller, J. J.; Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47 (4),
771.
(69) Gustafson, J. L.; Sigman, M. S.; Miller, S. J. Org. Lett. 2010, 12
(12), 2794.
(96) Gelalcha, F. G.; Anilkumar, G.; Tse, M. K.; Bruckner, A.; Beller,
M. Chem. - Eur. J. 2008, 14 (25), 7687.
̈
(97) El-Hamdouni, N.; Companyo,
Eur. J. 2010, 16 (4), 1142.
́
X.; Rios, R.; Moyano, A. Chem. -
(98) Li, N.; Chen, X.-H.; Zhou, S.-M.; Luo, S.-W.; Song, J.; Ren, L.;
Gong, L.-Z. Angew. Chem., Int. Ed. 2010, 49 (36), 6378.
(99) Chen, Z.; Wang, B.; Wang, Z.; Zhu, G.; Sun, J. Angew. Chem.,
Int. Ed. 2013, 52 (7), 2027.
(100) Wang, H.-Y.; Zhang, K.; Zheng, C.-W.; Chai, Z.; Cao, D.-D.;
Zhang, J.-X.; Zhao, G. Angew. Chem., Int. Ed. 2015, 54 (6), 1775.
(101) Tanaka, K.; Iwashita, T.; Yoshida, E.; Ishikawa, T.; Otuka, S.;
Urbanczyk-Lipkowska, Z.; Takahashi, H. Chem. Commun. 2015, 51
(37), 7907.
(102) For further support of this claim, see the Supporting
Information.
(103) A significant positive nonlinear effect was also observed using
4e and o-tolylboronic acid (3p). See the Supporting Information for
details.
(104) Despite its formally “positive” enantioselectivity with p-
tolylboronic acid (3b), Ph-substituted catalyst 4f displayed a nonlinear
effect, as anticipated given its lack of steric bulk proximal to the
phosphate moiety. For a more complete discussion of this experiment,
see the Supporting Information.
(105) It should also be noted that for both of the BA subsets, σ-para
values correlate with selectivity, indicating that asymmetric induction
throughout either set is governed by a substantial resonance
component (σ-meta values were not well-correlated, see Supporting
Information for details).
(70) Jensen, K. H.; Sigman, M. S. J. Org. Chem. 2010, 75 (21), 7194.
(71) Harper, K. C.; Sigman, M. S. Proc. Natl. Acad. Sci. U. S. A. 2011,
108, 2179.
(72) Harper, K. C.; Sigman, M. S. Science 2011, 333 (6051), 1875.
(73) Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4
(5), 366.
(74) Harper, K. C.; Sigman, M. S. J. Org. Chem. 2013, 78 (7), 2813.
(75) Harper, K. C.; Vilardi, S. C.; Sigman, M. S. J. Am. Chem. Soc.
2013, 135 (7), 2482.
(76) McCammant, M. S.; Sigman, M. S. Chem. Sci. 2015, 6 (2), 1355.
(77) Zhang, C.; Santiago, C. B.; Kou, L.; Sigman, M. S. J. Am. Chem.
Soc. 2015, 137 (23), 7290.
(106) Martínez-Aguirre, M. A.; Yatsimirsky, A. K. J. Org. Chem. 2015,
80 (10), 4985.
(107) Tokunaga, Y.; Ueno, H.; Shimomura, Y.; Seo, T. Heterocycles
2002, 57 (5), 787.
(108) Egli, M.; Sarkhel, S. Acc. Chem. Res. 2007, 40 (3), 197.
(109) Singh, S. K.; Das, A. Phys. Chem. Chem. Phys. 2015, 17 (15),
9596.
(78) Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan,
H. B. J. Am. Chem. Soc. 1986, 108 (9), 2353.
(79) Guillaneux, D.; Zhao, S.-H.; Samuel, O.; Rainford, D.; Kagan, H.
B. J. Am. Chem. Soc. 1994, 116 (21), 9430.
(110) Gallivan, J. P.; Dougherty, D. A. Org. Lett. 1999, 1 (1), 103.
(111) Grimme, S. J. Comput. Chem. 2004, 25 (12), 1463.
(112) Amicangelo, J. C.; Gung, B. W.; Irwin, D. G.; Romano, N. C.
Phys. Chem. Chem. Phys. 2008, 10 (19), 2695.
(80) Kagan, H. B.; Girard, C.; Guillaneux, D.; Rainford, D.; Samuel,
(113) Jain, A.; Ramanathan, V.; Sankararamakrishnan, R. Protein Sci.
O.; Zhang, S. Y.; Zhao, S. H.; Ciglic, M. I.; Haugg, M.; Trabesinger-
2009, 18 (3), 595.
Ruf, N.; Weinhold, E. G. Acta Chem. Scand. 1996, 50, 345.
̈
(114) Yang, T.; An, J.-J.; Wang, X.; Wu, D.-Y.; Chen, W.; Fossey, J. S.
Phys. Chem. Chem. Phys. 2012, 14 (30), 10747.
(115) Singh, S. K.; Kumar, S.; Das, A. Phys. Chem. Chem. Phys. 2014,
(81) Heller, D.; Drexler, H.-J.; Fischer, C.; Buschmann, H.; Baumann,
W.; Heller, B. Angew. Chem., Int. Ed. 2000, 39 (3), 495.
(82) Kagan, H. B. Adv. Synth. Catal. 2001, 343 (3), 227.
(83) Kagan, H. B. Synlett 2001, 2001 (Special Issue), 888.
(84) Klussmann, M.; Mathew, S. P.; Iwamura, H.; Wells, D. H.;
Armstrong, A.; Blackmond, D. G. Angew. Chem. 2006, 118 (47), 8157.
(85) Satyanarayana, T.; Abraham, S.; Kagan, H. B. Angew. Chem., Int.
Ed. 2009, 48 (3), 456.
16 (19), 8819.
(116) Mondal, S. I.; Dey, A.; Sen, S.; Patwari, G. N.; Ghosh, D. Phys.
Chem. Chem. Phys. 2014, 17 (1), 434.
(117) Ao, M.-Z.; Tao, Z.; Liu, H.-X.; Wu, D.-Y.; Wang, X. Comput.
Theor. Chem. 2015, 1064, 25.
L
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX