Communication
ChemComm
Table 2 Optical and electrochemical properties in DCM
While the aza-isoindolmethines appear to strongly absorb
through one major transition (Fig. 5), their Zn(II) complexes
show two strong absorbance peaks between 600 and 800 nm
(Fig. S40, ESI†). The relative strengths of these transitions vary
depending on the specific ligand. Finally, we made a test OPV
device using P3HT as a donor and 2b-Zn as an acceptor. While
aggregation of 2b-Zn limited the current, the device shows that
these new aza-dipyrromethene compounds can accept electrons
from p-type materials (Fig. S42, ESI†).
In conclusion, we have developed a novel synthetic procedure for
the production of aza-diisoindolmethines. The technique has three
main benefits over existing syntheses. Firstly, the aromatic nitrile
does not have to be symmetric, which allows for the selective
synthesis of regioregular products. The second benefit is that the
reaction produces aza-diisoindolmethines with nitrile groups, some-
thing that would not have been possible with the existing syntheses.
Finally, aromatic nitriles are much more readily available than ortho-
dicyano compounds, which provides access to a much larger
product scope from less expensive materials. Further research
is required to learn more about the device properties of the
newly-accessible aza-diisoindolmethines and their complexes.
Aza-dipyrromethene
Zn(II)
ox
1/2
a
red a
1/2
lmax (nm)
E
(V)
E
(V)
lmax (nm)
1a
1b
1c
1d
2a
2b
621
648
640
653
624
632
0.6
—
—
0.1
0.5
—
À0.9
—
—
À1.3
À1.0
—
659
647
—
631
658
641
a
Half-wave potentials were measured in CH2Cl2/TBAPF6 (0.1 M) vs.
Ag/Ag+, scan rate 100 mV sÀ1, using Fc/Fc+ as an internal standard.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 G. Ulrich, R. Ziessel and A. Harriman, Angew. Chem., Int. Ed., 2008,
47, 1184–1201.
2 J. Min, T. Ameri, R. Gresser, M. Lorenz-Rothe, D. Baran, A. Troeger,
V. Sgobba, K. Leo, M. Riede and D. M. Guldi, ACS Appl. Mater.
Interfaces, 2013, 5, 5609–5616.
3 W. Sheng, Y. Wu, C. Yu, P. Bobadova-Parvanova, E. Hao and L. Jiao,
Org. Lett., 2018, 20, 2620–2623.
4 Y. Ge and D. F. O’Shea, Chem. Soc. Rev., 2016, 45, 3846–3864.
¨
5 S. Kraner, J. Widmer, J. Benduhn, E. Hieckmann, T. Jageler-Hoheisel,
S. Ullbrich, D. Schu¨tze, K. Sebastian Radke, G. Cuniberti and F. Ortmann,
Phys. Status Solidi A, 2015, 212, 2747–2753.
6 W. Senevirathna, J. Liao, Z. Mao, J. Gu, M. Porter, C. Wang,
´
R. Fernando and G. Sauve, J. Mater. Chem. A, 2015, 3, 4203–4214.
7 C. J. Ziegler, K. Chanawanno, A. Hasheminsasab, Y. V. Zatsikha,
E. Maligaspe and V. N. Nemykin, Inorg. Chem., 2014, 53, 4751–4755.
Fig. 5 Normalized absorption spectra of (a) fused-ring aza-dipyrromethenes
´
8 S. Pejic, A. M. Thomsen, F. S. Etheridge, R. Fernando, C. Wang and
in DCM and (b) their Zn(II) complexes.
´
G. Sauve, J. Mater. Chem. C, 2018, 6, 3990–3998.
9 M. A. T. Rogers, J. Chem. Soc., 1943, 590–596.
10 P. Batat, M. Cantuel, G. Jonusauskas, L. Scarpantonio, A. Palma, D. F.
O’Shea and N. D. McClenaghan, J. Phys. Chem. A, 2011, 115, 14034–14039.
purified by trituration, as the zinc insertion reaction generates
very little side product compared to the equivalent reaction with 11 M. Grossi, A. Palma, S. O. McDonnell, M. J. Hall, D. K. Rai,
J. Muldoon and D. F. O’Shea, J. Org. Chem., 2012, 77, 9304–9312.
12 W. Sheng, J. Cui, Z. Ruan, L. Yan, Q. Wu, C. Yu, Y. Wei, E. Hao and
BF3ÁOEt2.
As with other Zn(II) aza-dipyrromethene complexes reported,
L. Jiao, J. Org. Chem., 2017, 82, 10341–10349.
the Zn(II) species show strong absorption peaks in the red/NIR 13 R. Gresser, M. Hummert, H. Hartmann, K. Leo and M. Riede,
Chem. – Eur. J., 2011, 17, 2939–2947.
14 H. Lu, S. Shimizu, J. Mack, Z. Shen and N. Kobayashi, Chem. – Asian J.,
region and do not fluoresce. Cyclic voltammetry of compounds 1a,
1d, and 2a shows a trend of decreasing HOMO/LUMO energies
2011, 6, 1026–1037.
with an increasing number of cyano groups. This shows that the 15 L. Zhang, L. Zhao, K. Wang and J. Jiang, Dyes Pigm., 2016, 134, 427–433.
16 W. Zheng, B.-B. Wang, C.-H. Li, J.-X. Zhang, C.-Z. Wan, J.-H. Huang,
J. Liu, Z. Shen and X.-Z. You, Angew. Chem., Int. Ed., 2015, 54, 9070–9074.
17 T. D. Krizan and J. C. Martin, J. Org. Chem., 1982, 47, 2681–2682.
newly accessible aza-dipyrromethene compounds should possess
previously unattainable electronic properties. These properties are
summarized in Table 2.
18 T. D. Krizan and J. C. Martin, J. Am. Chem. Soc., 1983, 105, 6155–6157.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018