Henry reaction proceeded via a six-membered cyclic transition
state as shown in Scheme 1, in which the side chain of the
controlled aza-Henry reaction, and provide a model to explain
the observed stereoinduction in the aza-Henry reactions.
The Michael reaction of aldehyde 1 with ꢀ-nitrostyrene 2a
in the presence of 20 mol % of primary amine-thiourea catalyst
3 proceeded to give 4a in high anti-selectivity (anti/syn )
98/2) as reported previously (Table 1).12a Without isolation of 2a,
Scheme 1. Predicted Stereoselectivity of the Aza-Henry Reaction
Table 1. Optimization of Reaction Conditions of the One-Pot
anti-Michael-Aza-Henry Reactiona
aldehyde occupies the equatorial position. The success of this
method prompted us to use an imine as an electrophile to
produce iminosugar derivatives. We hypothesized that the
limited number of coordination sites of the nitrogen in the
protected imine would ensure that the side chain would be in
an axial orientation in the transition state to give an anti-aza-
Henry product with opposite stereochemistry. Recently, ste-
reoselective synthesis of multisubstituted piperidine derivatives
using stepwise13 or one-pot Michael-aza-Henry reactions was
reported.14 The stereochemistry of these products vary, and the
mechanism of stereoinduction was not explained. Herein, we
describe the highly enantioselective one-pot syntheses of
iminosugar derivatives utilizing an organocatalyst-controlled
asymmetric anti-Michael reaction, followed by substrate-
base
AcOH temp time
yield (%)
drc eed
entry
(equiv)
(equiv) (°C) (h) 6a + 7ab 8a 6a:7a (%)
1
Et3N (0.5)
DBU (0.5)
Cs2CO2 (1)
Cs2CO2 (1)
K2CO2 (1)
t-BuOK (1)
i-Pr2EtN (1)
DABCO (1)
DBU (1)
-
-
-
-
-
-
-
rt
rt
rt
0
0
0
3.5
1
1
0.5
0.5
0.5
3
16
37
43
61
59
36
30
18
52
58
49
64
68
25
22
n.d.f
6
14
13
15
18
17
15
6
>10:1 98
1:10 99
2e
3
2:1
5:1
6:1
3:1
>10:1
2:1
>10:1
5:1
6:1
-
-
-
-
-
-
-
-
-
-
4
5
6
7
8
9
10
11
12
0
-
-
-
0
0
0
0
0
0
3
0.5
0.5
0.5
0.5
0.5
TMG (1)
TMG (1)
0.5
0.5
0.5
TMG (1.5)
6
3
7:1
13g TMG (1.5)
7:1 99
(10) For early studies, see: (a) Bui, T.; Barbas, C. F., III. Tetrahedron
Lett. 2000, 41, 6951. (b) Chowdari, N. S.; Ramachary, D. B.; Co´rdova, A.;
Barbas, C. F., III. Tetrahedron Lett. 2002, 43, 9591. (c) Chowdari, N. S.;
Ramachary, D. B.; Barbas, C. F., III. Org. Lett. 2003, 5, 1685. (d)
Ramachary, D. B.; Co´rdova, A.; Barbas, C. F., III. Angew. Chem., Int. Ed.
2003, 42, 4233. (e) Ramachary, D. B.; Barbas, C. F., III. Chem.sEur. J.
2004, 10, 5323. (f) Ramachary, D. B.; Anebouselvy, K.; Barbas, C. F., III.
J. Org. Chem. 2004, 69, 5838.
a 2a (0.2 mmol) was reacted with commercially available 1 (0.6 mmol) in
the presence of 20 mol % of 3 (0.04 mmol) in CH2Cl2 at rt; 5 (0.3 mmol),
AcOH, and base were then added and reacted for time (h) at temp °C. b Isolated
c
1
yield of a mixture of 6a and 7a. Determined by H NMR analysis of an
isolated mixture of 6a and 7a. d Determined by chiral phase HPLC analysis of
the major diastereomer. e 1.5 equiv of imine 5 was used. f n.d.: not detected.
g 2 equiv of 1 M CH2Cl2 solution of 1 (0.4 mmol), which was purified by
column chromatography, was used.
(11) For reviews, see: (a) Enders, D.; Grondal, C.; Hu¨ttl, M. R. M.
Angew. Chem., Int. Ed. 2007, 46, 1570. (b) MacMillan, D. W. C.; Walji,
A. M. Synlett 2007, 1477. (c) Grondal, C.; Jeanty, M.; Enders, D. Nature
Chem. 2010, 2, 167. For recent examples, see: (d) Enders, D.; Hu¨ttl,
M. R. M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int. Ed. 2007,
46, 467. (e) Aroyan, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 256.
(f) Wang, J.; Li, H.; Xie, H.; Zu, L.; Shen, X.; Wang, W. Angew. Chem.,
Int. Ed. 2007, 46, 9050. (g) Carlone, A.; Cabrera, S.; Marigo, M.; Jørgensen,
K. A. Angew. Chem., Int. Ed. 2007, 46, 1101. (h) Hayashi, Y.; Okano, T.;
Aratake, S.; Hazelard, D. Angew. Chem., Int. Ed. 2007, 46, 4922. (i) Reyes,
E.; Jiang, H.; Milelli, A.; Elsner, P.; Hazell, R. G.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2007, 46, 9202. (j) Zhou, J.; List, B. J. Am. Chem. Soc.
2007, 129, 7498. (k) Vicario, J. L.; Reboredo, S.; Bad´ıa, D.; Carrillo, L.
Angew. Chem., Int. Ed. 2007, 46, 5168. (l) Ramachary, D. B.; Kishor, M.
J. Org. Chem. 2007, 72, 5056. (m) Ramachary, D. B.; Kishor, M.; Reddy,
Y. V. Eur. J. Org. Chem. 2008, 6, 975. (n) Cabrera, S.; Aleman, J.; Bolze,
P.; Bertelsen, S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2008, 47, 121.
(o) Penon, O.; Carlone, A.; Mazzanti, A.; Locatelli, M.; Sambri, L.; Bartoli,
G.; Melchiorre, P. Chem.sEur. J. 2008, 14, 4788. (p) Enders, D.; Wang,
C.; Bats, J. W. Angew. Chem., Int. Ed. 2008, 47, 7539. (q) Lu, M.; Zhu,
D.; Lu, Y. P.; Hou, Y. X.; Tan, B.; Zhong, G. F. Angew. Chem., Int. Ed.
2008, 47, 10187. (r) Han, R.-G.; Wang, Y.; Li, Y.-Y.; Xu, P.-F. AdV. Synth.
Catal. 2008, 350, 1474. (s) Ramachary, D. B.; Reddy, Y. V.; Prakash, B. V.
Org. Biomol. Chem. 2008, 6, 719. (t) Rueping, M.; Kuenkel, A.; Tato, F.;
Bats, J. W. Angew. Chem., Int. Ed. 2009, 48, 3699. (u) Enders, D.; Kru¨ll,
R.; Bettray, W. Synthesis 2010, 4, 567. (v) Jiang, K.; Jia, Z.-J.; Wu, L.;
Chen, Y.-C. Org. Lett. 2010, 12, 2766. (w) Ramachary, D. B.; Mondal, R.;
Venkaiah, C. Org. Biomol. Chem. 2010, 8, 321. (x) Ramachary, D. B.;
Mondal, R.; Venkaiah, C. Eur. J. Org. Chem. 2010, 17, 3205.
p-toluenesulfonyl imine 5 and Et3N were added to the mixture,
and the reaction was allowed to proceed at room temperature.
Although the yield was low, iminosugar derivative 6a was obtained
with ee (98% ee) comparable to that of the Michael reaction (entry
1). The stereocenters at the 3 and 4 positions of 6a were presumably
fixed during the asymmetric anti-Michael reaction. Although eight
possible diastereomers could have been produced at 2, 5, and 6
positions, the diastereomer 6a was predominantly obtained after
column chromatography. The high selectivity of the aza-Henry
reaction in the presence of achiral base indicated that the stereo-
chemistry of the product was induced by the chirality of the
Michael adduct 4a.12b,13,14 The configuration of 6a was
determined as (2R,3S,4S,5R,6S) by X-ray crystallographic
analysis (Figure 1a).
(12) (a) Uehara, H.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2009,
48, 9848. (b) Uehara, H.; Imashiro, R.; Herna´ndez-Torres, G.; Barbas, C. F.,
III. Proc. Natl. Acad. Sci. U.S.A. 2010 (Epub Aug 3).
Org. Lett., Vol. 12, No. 22, 2010
5251