Y. M. Kim et al. / Tetrahedron Letters 51 (2010) 5922–5926
5925
3f
2f
Pd0
Pd0
Cl
Cl
Cl
Ph
Ph
N
Ph
N
N
N
6-exo
5-exo
N
N
4
6
46% from 2f
10% from 3f
5% from 2f
25% from 3f
Pd
Br
(VI)
Pd
Br
(IV)
(V)
aryl-aryl
aryl-aryl
Cl
Ph
N
N
5
9% from 2f
45% from 3f
(VII)
Scheme 3.
28, 17–28; (d) Li, C.-J.; Chan, T.-H. Tetrahedron 1999, 55, 11149–11176; (e) Pae,
A. N.; Cho, Y. S. Curr. Org. Chem. 2002, 6, 715–737; (f) Nair, V.; Ros, S.; Jayan, C.
N.; Pillai, B. S. Tetrahedron 2004, 60, 1959–1982; (g) Podlech, J.; Maier, T. C.
Synthesis 2003, 633–655.
In summary, a facile synthesis of fully-substituted C-alkenylim-
idazoles has been disclosed starting from N-(cyanoalkyl)amides in
moderate yields via the In-mediated Barbier-type allylation of
nitrile and the following dehydrative cyclization cascade.
6. (a) Fujiwara, N.; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 4729–4732; (b)
Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095–4101.
7. For the In-mediated Barbier-type allylation of nitrile-containing substrates,
see: (a) Kim, S. H.; Lee, H. S.; Kim, K. H.; Kim, J. N. Tetrahedron Lett. 2009, 50,
1696–1698; (b) Kim, S. H.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett.
2009, 50, 5744–5747; (c) Kim, S. H.; Lee, H. S.; Kim, K. H.; Kim, J. N. Tetrahedron
Lett. 2009, 50, 6476–6479; (d) Kim, S. H.; Kim, S. H.; Kim, K. H.; Kim, J. N.
Tetrahedron Lett. 2010, 51, 860–862; (e) Kim, S. H.; Kim, S. H.; Kim, T. H.; Kim, J.
N. Tetrahedron Lett. 2010, 51, 2774–2777; (f) Kim, S. H.; Lee, H. S.; Kim, K. H.;
Kim, S. H.; Kim, J. N. Tetrahedron 2010, 66, 7065–7076.
Acknowledgments
This research was supported by the Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology
(2010-0015675). Spectroscopic data were obtained from the Korea
Basic Science Institute, Gwangju branch.
8. For the synthesis of
a-amino nitriles from mandelonitrile derivatives, see: (a)
McEwen, W. E.; Grossi, A. V.; MacDonald, R. J.; Stamegna, A. P. J. Org. Chem.
1980, 45, 1301–1308; (b) Langridge, D. C.; Hixson, S. S.; McEwen, W. E. J. Org.
Chem. 1985, 50, 5503–5507; (c) Cooney, J. V.; McEwen, W. E. J. Org. Chem. 1981,
46, 2570–2573.
References and notes
9. For the synthesis of
a-amino nitriles from aldimines (the Strecker reaction),
1. For the synthesis of imidazoles and their biological activities, see: (a)
Grimmett, M. R. In Advances in Heterocyclic Chemistry; Katritzky, A. R.,
Boulton, A. J., Eds.; Academic: New York, 1980; Vol. 27, p 241; (b) Grimmett,
M. R.. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Boulton, A. J., Eds.;
Academic: New York, 1970; Vol. 12, p 103; (c) Weinreb, S. M. Nat. Prod. Rep.
2007, 24, 931–948; (d) Du, H.; He, Y.; Sivappa, R.; Lovely, C. J. Synlett 2006, 965–
992; (e) Gosselin, F.; Lau, S.; Nadeau, C.; Trinh, T.; O’Shea, P. D.; Davies, I. W. J.
Org. Chem. 2009, 74, 7790–7797; (f) Koswatta, P. B.; Sivappa, R.; Dias, H. V. R.;
Lovely, C. J. Org. Lett. 2008, 10, 5055–5058; (g) Shilcrat, S. C.; Mokhallalati, M.
K.; Fortunak, J. M. D.; Pridgen, L. N. J. Org. Chem. 1997, 62, 8449–8454; (h)
Aberle, N.; Catimel, J.; Nice, E. C.; Watson, K. G. Bioorg. Med. Chem. Lett. 2007, 17,
3741–3744.
2. For the leading references on the synthesis of imidazole derivatives, see: (a)
Kanazawa, C.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2006, 128, 10662–
10663; (b) van Leusen, A. M.; Wildeman, J.; Oldenziel, O. H. J. Org. Chem. 1977,
42, 1153–1159; (c) Kison, C.; Opatz, T. Chem. Eur. J. 2009, 15, 843–845; (d)
Zhong, Y.-L.; Lee, J.; Reamer, R. A.; Askin, D. Org. Lett. 2004, 6, 929–931; (e)
Frantz, D. E.; Morency, L.; Soheili, A.; Murry, J. A.; Grabowski, E. J. J.; Tillyer, R. D.
Org. Lett. 2004, 6, 843–846; (f) Zaman, S.; Mitsuru, K.; Abell, A. D. Org. Lett.
2005, 7, 609–611; (g) Gwiazda, M.; Reissig, H.-U. Synthesis 2008, 990–994; (h)
Sharma, S. D.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216–2220.
3. For the synthesis of alkenylimidazoles, see: (a) Yang, X.; Knochel, P. Chem.
Commun. 2006, 2170–2172; (b) Abarbri, M.; Dehmel, F.; Knochel, P. Tetrahedron
Lett. 1999, 40, 7449–7453; (c) Abarbri, M.; Thibonnet, J.; Berillon, L.; Dehmel, F.;
Rottlander, M.; Knochel, P. J. Org. Chem. 2000, 65, 4618–4634; (d) Chittiboyina,
A. G.; Reddy, C. R.; Watkins, E. B.; Avery, M. A. Tetrahedron Lett. 2004, 45, 1869–
1872; (e) Dehmel, F.; Abarbri, M.; Knochel, P. Synlett 2000, 345–346; (f) Turner,
R. M.; Ley, S. V.; Lindell, S. D. Synlett 1993, 748–750.
see: (a) Leblanc, J.-P.; Gibson, H. W. J. Org. Chem. 1994, 59, 1072–1077; (b)
Spaltenstein, A.; Holler, T. P.; Hopkins, P. B. J. Org. Chem. 1987, 52, 2977–2979;
(c) Naim, S. S.; Sharma, S. Synthesis 1992, 664–666; (d) Wiles, C.; Watts, P. Eur. J.
Org. Chem. 2008, 5597–5613; (e) Niknam, K.; Saberi, D.; Sefat, M. N. Tetrahedron
Lett. 2010, 51, 2959–2962; (f) Groger, H. Chem. Rev. 2003, 103, 2795–2827 and
further references cited therein; (g) Li, Z.; Ma, Y.; Xu, J.; Shi, J.; Cai, H.
Tetrahedron Lett. 2010, 51, 3922–3926.
10. Typical procedure for the synthesis of 2a and 3a: A stirred mixture of 1a (173 mg,
0.5 mmol), allyl bromide (182 mg, 1.5 mmol), and indium (86 mg, 0.75 mmol)
in THF (1.0 mL) was heated to reflux for 40 min. After the usual aqueous
workup and column chromatographic purification process (hexanes/CH2Cl2/
EtOAc, 10:1:1), we obtained compound 2a (115 mg, 62%) and 3a (32 mg, 17%)
as a white solid. Other compounds were synthesized similarly, and the selected
spectroscopic data of 2a, 3a, 2d, 3d, 2f, 3f, and 2g are as follows.
Compound 2a: 62%; white solid, mp 168–170 °C; IR (KBr) 1600, 1493, 1466,
1443 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.43 (dt, J = 6.3 and 1.5 Hz, 2H), 5.05–
;
5.17 (m, 2H), 6.07–6.20 (m, 1H), 6.90–6.95 (m, 2H), 7.03–7.09 (m, 2H), 7.18–
7.29 (m, 8H), 7.30–7.35 (m, 2H); 13C NMR (CDCl3, 75 MHz) d 32.15, 115.44,
127.54, 128.10, 128.13, 128.20, 128.93, 129.29, 129.33, 129.68, 130.23, 130.34,
130.67, 133.80, 135.87, 136.92, 138.06, 146.41; ESIMS m/z 371 (M++H), 373
(M++H+2). Anal. Calcd for C24H19ClN2: C, 77.72; H, 5.16; N, 7.55. Found: C,
77.96; H, 5.25; N, 7.39.
Compound 3a: 17%; white solid, mp 149–151 °C; IR (KBr) 1593, 1493,
1445 cmÀ1 1H NMR (CDCl3, 300 MHz) d 1.86 (dd, J = 6.6 and 1.5 Hz, 3H),
;
6.33 (dd, J = 15.6 and 1.5 Hz, 1H), 6.61–6.72 (m, 1H), 6.90–6.96 (m, 2H), 7.07–
7.10 (m, 2H), 7.20–7.30 (m, 8H), 7.35–7.38 (m, 2H); 13C NMR (CDCl3, 75 MHz) d
18.42, 121.46, 126.10, 127.68, 128.18, 128.25, 128.43, 129.07, 129.36 (2C),
129.44, 130.30, 130.55, 133.93, 135.68, 137.62, 147.17 (one carbon is
overlapped); ESIMS 371 (M++H), 373 (M++H+2). Anal. Calcd for C24H19ClN2:
C, 77.72; H, 5.16; N, 7.55. Found: C, 77.85; H, 5.32; N, 7.51.
4. For the RCM and Pd-catalyzed reactions of alkenylimidazoles, see: (a) Gracias,
V.; Gasiecki, A. F.; Djuric, S. W. Org. Lett. 2005, 7, 3183–3186; (b) Chen, Y.;
Rasika, H. V.; Lovely, C. J. Tetrahedron Lett. 2003, 44, 1379–1382; (c) Lovely, C. J.;
Chen, Y.; Ekanayake, E. V. Heterocycles 2007, 74, 873–894; (d) Beebe, X.;
Gracias, V.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 3225–3228.
5. For the general review on indium-mediated reactions, see: (a) Auge, J.; Lubin-
Germain, N.; Uziel, J. Synthesis 2007, 1739–1764; (b) Kargbo, R. B.; Cook, G. R.
Curr. Org. Chem. 2007, 11, 1287–1309; (c) Lee, P. H. Bull. Korean Chem. Soc. 2007,
Compound 2d: 36%; pale yellow oil; IR (film) 1670, 1496, 1452, 1400 cmÀ1 1H
;
NMR (CDCl3, 300 MHz) d 3.36 (dt, J = 6.3 and 1.5 Hz, 2H), 4.95–5.11 (m, 2H),
5.13 (s, 2H), 6.00–6.13 (m, 1H), 6.72–6.75 (m, 2H), 7.11–7.24 (m, 5H), 7.26–
7.40 (m, 6H), 7.54–7.60 (m, 2H); 13C NMR (CDCl3, 75 MHz) d 32.02, 48.36,
115.06, 125.88, 127.17, 127.97, 128.30, 128.37, 128.44, 128.58, 128.90, 130.18,