1452
H. C. Coleman, B. L. May, and S. F. Lincoln
using matched quartz cells with a path length of 1 cm in a cell
block thermostatted at 298.2 0.1 K. Samples were equilibrated
for 10 min at this temperature before measurement. All spectra
were obtained over a range of 250–450 nm with a slit width of
2 nm, a scan rate of 600 nm min−1 and a data collection interval
of 1.0 nm.
Fluorescence spectra were recorded on aVarian Cary Eclipse
fluorimeter. The solutions were contained in a 1 cm pathlength
quartz cell and placed in a thermostatted 298.2 K sample block
for 10 min before measurement. Spectra were obtained over a
range of 430–650 nm with excitation at the isosbestic point
at 336 nm (Figs 2 and 3). This isosbestic point was chosen
as the excitation wavelength to ensure that any fluorescence
changes were not due to differing absorbance characteristics
of H3−, [Zn3], and [Zn32]2−. The excitation and emission slit
widths were 5 nm, the scan rate was 120 nm min−1 and the data
collection interval was 1.0 nm. The quantum yields[32] were
determined using quinine hemisulfate as the reference fluoro-
phore and the refractive index of the solvent system was obtained
from literature data.[33]
[6] D. H. Nies, Science 2007, 317, 1695. doi:10.1126/SCIENCE.1149048
[7] E. L. Que, D. W. Domaille, C. J. Chang, Chem. Rev. 2008, 108, 1517.
doi:10.1021/CR078203U
[8] W. Maret,Y. Li, Chem. Rev. 2009, 109, 4682. doi:10.1021/CR800556U
[9] A. Nomura, Y. Sugiura, J. Am. Chem. Soc. 2004, 126, 15374.
doi:10.1021/JA045663L
[10] M. Nagaoka,Y. Doi, J. Kuwahara,Y. Sugiura, J.Am. Chem. Soc. 2002,
124, 6526. doi:10.1021/JA025856D
[11] C. I. Stains, J. R. Porter, A. T. Ooi, D. J. Segal, I. Ghosh, J. Am. Chem.
Soc. 2005, 127, 10782. doi:10.1021/JA051969W
[12] M. P. Cuajungco, G. J. Lees, Neurobiol. Dis. 1997, 4, 137.
doi:10.1006/NBDI.1997.0163
[13] L. E. Scott, C. Orvig, Chem. Rev. 2009, 109, 4885. doi:10.1021/
CR9000176
[14] M. Nolan, S. J. Lippard, Acc. Chem. Res. 2009, 42, 193. doi:10.1021/
AR8001409
[15] (a) K. M. Hendrickson, T. Rodopoulos, P.-A. Pittet, I. Mahadevan,
S. F. Lincoln, A. D. Ward, T. Kurucsev, P. A. Duckworth, I. J. Forbes,
P. D. Zalewski, W. H. Betts, J. Chem. Soc., Dalton Trans. 1997, 3879.
doi:10.1039/A703433D
(b) K. Hendrickson, PhD Thesis: The use and spectroscopic proper-
ties of Zinquin, a zinc(II) specific fluorophore 1999 (University of
Adelaide: Adelaide).
The K1 and K2 values were derived by fitting algorithms
describing the variation of absorbance and fluorescence with
equilibria (1) and (2) at 1 nm intervals over the ranges 270–
450 nm and 430–650 nm, respectively, using the SPECFIT/32
protocol.[34]
[16] S. C. Burdette, C. J. Frederickson, W. Bu, S. J. Lippard, J. Am. Chem.
Soc. 2003, 125, 1778. doi:10.1021/JA0287377
[17] T. Hirano, K. Kikuchi, Y. Urano, T. Nagano, J. Am. Chem. Soc. 2002,
124, 6555. doi:10.1021/JA025567P
[18] K. M. Hendrickson, J. P. Geue, O. Wyness, S. F. Lincoln, A. D. Ward,
J. Am. Chem. Soc. 2003, 125, 3889. doi:10.1021/JA020685Y
[19] S. G. Schulman, L. B. Sanders, Anal. Chim. Acta 1971, 56, 83.
doi:10.1016/S0003-2670(01)80111-2
[20] P. D. Zalewski, I. J. Forbes, W. H. Betts, Biochem. J. 1993, 296, 403.
[21] P. D. Zalewski, I. J. Forbes, R. F. Seamark, R. Borlinghaus, W. H. Betts,
S. F. Lincoln,A. D.Ward, Chem. Biol. 1994, 1, 153. doi:10.1016/1074-
5521(94)90005-1
[22] P. Coyle, P. D. Zalewski, J. C. Philcox, I. J. Forbes, A. D. Ward,
S. F. Lincoln, I. Mahadevan, A. M. Rofe, Biochem. J. 1994, 303, 781.
[23] P. D. Zalewski, S. H. Millard, I. J. Forbes, O. Kapaniris, A. Slavotinek,
W. H. Betts, A. D. Ward, S. F. Lincoln, I. Mahadevan, J. Histochem.
Cytochem. 1994, 42, 877.
[24] P. D. Zalewski, X. Jian, L. L. L. Soon, W. G. Breed, R. F. Seamark,
S. F. Lincoln, A. D. Ward, F.-Z. Sun, Reprod. Fertil. Dev. 1996, 8,
1097. doi:10.1071/RD9961097
[25] I. B. Mahadevan, M. C. Kimber, S. F. Lincoln, E. R. T. Tiekink,
A. D. Ward, W. H. Betts, I. J. Forbes, P. D. Zalewski, Aust. J. Chem.
1996, 49, 561.
[26] P. Zalewski, A. Truong-Tran, S. F. Lincoln, A. D. Ward, A. Shankar,
P. Coyle, L. Jayaram, A. Copley, D. Grosser, C. Murgia, C. Lang,
R. Ruffin, Biotechniques 2006, 40, 509. doi:10.2144/06404RR02
[27] M. C. Kimber, I. B. Mahadevan, S. F. Lincoln, E. R. T. Tiekink, J. Org.
Chem. 2000, 65, 8204. doi:10.1021/JO000678X
The concentration of adventitious Zn2+ in 25% v/v
aqueous/ethanol solutions 0.10 mol L−1 in NaClO4 and
1.00 × 10−3 mol L−1 in NaPIPES buffer at pH 6.6 was deter-
mined by back titration with Na2EDTA·H2 for which a Zn2+
complexation constant K1 = 1016.44 L mol−1 in aqueous solution
is reported.[35] A series of solutions 5.56 × 10−6 mol L−1 in H3−
was prepared in which [Na2EDTA·H2] was gradually increased,
and their fluorescence was determined over the range 430–
650 nm with excitation at 336 nm. Fluorescence decreased with
an increase in [EDTA] and extrapolation to zero fluorescence
intensity yielded a value of 3.9 × 10−7 mol L−1, which was also
taken as the value of [Zn2+
]
assuming stoichiometric
.
adventitious
1:1 complexation of Zn2+ by EDTA4−
Accessory Publication
Fig. A1 shows the potentiometric titration curve for H33+ and
the best-fit curve; Fig. A2 shows the speciation of H33+, H23,
H3−, and 32− with pH; Fig.A3 shows the increase in absorbance
as [Zn2+
increase in fluorescence as [Zn2+
]
total increases and the best fit curve; Fig. A4 shows the
increases and the best fit
]
total
curve; and Fig. A5 shows the speciation of H23, [Zn(3)], and
[Zn(3)2]2− derived from the fluorescence data. All figures are
available on the Journal’s website.
[28] A. W. Czarnik, Acc. Chem. Res. 1994, 27, 302. doi:10.1021/
AR00046A003
[29] D. G. Whitten, Acc. Chem. Res. 1980, 13, 83. doi:10.1021/
AR50147A004
[30] M. R. Wasielewski, Chem. Rev. 1992, 92, 435. doi:10.1021/
CR00011A005
[31] M. Schmid, S. Zimmermann, H. F. Krug, B. Sures, Environ. Int. 2007,
33, 385. doi:10.1016/J.ENVINT.2006.12.003
Acknowledgements
The award of an Australian Postgraduate award to H. Coleman and funding
of this research by the University ofAdelaide is gratefully acknowledged.We
thank Dr D.-T. Pham, Ms. C. Baker, and Dr J. Cawthray for their helpful input.
[32] W. H. Melhuish, J. Phys. Chem. 1961, 65, 229. doi:10.1021/
J100820A009
[33] Handbook of Chemistry and Physics (Eds R. C. Weast, S. M. Selby)
1977 (CRC Press: Cleveland, OH).
[34] R. A. Binstead, B. Jung, A. D. Zuberbuhler, SPECFIT/32, v3.0.39(b)
2007 (Spectrum Software Associates: Marlborough, MA).
[35] R. M. Smith,A. E. Martell, Critical Stability Constants,Vol. 2:Amines
1975 (Plenum Press: New York, NY).
References
[1] C. F. Mills, Zinc in Human Biology 1989 (Springer-Verlag: London).
[2] J. R. R. Fausto da Silva, R. J. P. Williams, The Biological Chemistry
of the Elements 1992 (Oxford University Press: Oxford).
[3] B. L. Vallee, D. S. Auld, Acc. Chem. Res. 1993, 26, 543. doi:10.1021/
AR00034A005
[4] E. Kimura, Acc. Chem. Res. 2001, 34, 171. doi:10.1021/AR000001W
[5] C. Andreini, L. Banci, I. Bertini, A. Rosato, J. Proteome Res. 2006, 5,
3173. doi:10.1021/PR0603699