300
P. Kaur, D. Sareen / Dyes and Pigments 88 (2011) 296e300
[7] Lavigne JJ, Anslyn EV. Sensing a paradigm shift in the field of molecular
and Cu2þ. Talanta 2008;76:9e14;
recognition: From selective to differential receptors. Angewandte Chemie
International Edition 2001;40:3118e30.
[8] (a) Jimenez D, Martinez-Manez R, Sancenon F, Soto J. Electro-optical triple-
channel sensing of metal cations via multiple signalling patterns. Tetrahedron
Letters 2004;45:1257e9;
(b) Kim HJ, Park JE, Choi MG, Ahn S, Chang S-K. Selective chromogenic and
fluorogenic signaling of Hg2þ ions using a fluorescein-coumarin conjugate.
Dyes and Pigments 2010;84:54e8;
(c) Cheng C-C, Chen Z-S, Wu C-Y, Lin C-C, Yang C-R, Yen Y-P. Azo dyes
featuring
a pyrene unit: New selective chromogenic and fluorogenic
(b) Raimundo Jr IM, Narayanaswamy R. Simultaneous determination of Zn(II),
Cd(II) and Hg(II) in water. Sensors and Actuators B: Chemical 2003;90:189e97;
(c) Komatsu H, Miki T, Citterio D, Kubota T, Shindo Y, Kitamura Y, et al. Single
molecular multianalyte (Ca2þ, Mg2þ) fluorescent probe and applications to
bioimaging. Journal of the American Chemical Society 2005;127:10798e9.
[9] Schmittel M, Lin HW. Quadruple-channel sensing: a molecular sensor with
a single type of receptor site for selective and quantitative multi-ion analysis.
Angewandte Chemie International Edition 2007;46:893e6.
chemodosimeters for Hg(II). Sensors and Actuators B: Chemical 2009;142:
280e7;
(d) Choi MG, Ryu DH, Jeon HL, Cha S, Cho J, Joo HH, et al. Chemodosimetric
Hg2þ-selective signalling by mercuration of dichlorofluorescein derivatives.
Organic Letters 2008;10:3717e20;
(e) Chen X, Nam S-W, Jou MJ, Kim Y, Kim S-J, Park S, et al. Hg2þ selective
fluorescent and colorimetric sensor: its crystal structure and application to
bioimaging. Organic Letters 2008;10:5235e8;
[10] (a) Kaur N, Kumar S. Single molecular colorimetric probe for simultaneous
estimation of Cu2þ and Ni2þ. Chemical Communications; 2007:3069e70;
(b) Kaur N, Kumar S. A differential receptor for selective and quantitative multi-
ion analysis for Co2þ and Ni2þ/Cu2þ. Tetrahedron Letters 2008;49:5067e9;
(c) Suslick KS, Rakow NA, Sen A. Colorimetric sensor arrays for molecular
recognition. Tetrahedron 2004;60:11133e8.
[11] (a) Singh N, Kaur N, Choitir CN, Callan JF. A dual detecting polymeric sensor:
chromogenic naked eye detection of silver and ratiometric fluorescent
detection of manganese. Tetrahedron Letters 2009;50:4201e4;
(b) Martinez-Tome MJ, Esquembre R, Mallavia R, Mateo CR. Development of
a dual-analyte fluorescent sensor for the determination of bioactive nitrite
and selenite in water samples. Journal of Pharmaceutical and Biomedical
Analysis 2010;51:484e9.
(f) Coronado E, Galan-Mascaros JR, Marti-Gastaldo C, Palomares E,
Durrant JR, Vilar R, et al. Reversible colorimetric probes for mercury sensing.
Journal of the American Chemical Society 2005;127:12351e6.
[19] Fluorimetric Hg2þ sensors: (a) Bae J-S, Gwon S-Y, Son Y-A, Kim S-H. A ben-
zothiazole-based semisquarylium dye suitable for highly selective Hg2þ
sensing in aqueous media. Dyes and Pigments 2009;83:324e7;
(b) Liu Y, Yu M, Chen Y, Zhang N. Convenient and highly effective fluorescence
sensing for Hg2þ in aqueous solution and thin film. Bioorganic and Medicinal
Chemistry 2009;17:3887e91;
(c) Bhalla V, Tejpal R, Kumar M, Puri RK, Mahajan RK. Terphenyl based ‘turn
on’ fluorescent sensor for mercury. Tetrahedron Letters 2009;50:2649e52;
(d) Fan J, Guo K, Peng X, Du J, Wang J, Sun S, et al. A Hg2þ fluorescent che-
mosensor without interference from anions and Hg2þ-imaging in living cells.
Sensors and Actuators B: Chemical 2009;142:191e6;
(e) Huang W, Song C, He C, Lv G, Hu X, Zhu X, et al. Recognition preference of
rhodamine-thiospirolactams for mercury(II) in aqueous solution. Inorganic
Chemistry 2009;48:5061e72;
[12] (a) Kaur P, Kaur S, Singh K. A selective and sensitive ‘naked eye’ anion detector
based on an imine-p-TCNQ assembly. Tetrahedron Letters 2007;48:7191e3;
(b) Kaur P, Kaur S, Mahajan A, Singh K. Highly selective colorimetric sensor for
Zn2þ based on hetarylazo derivative. Inorganic Chemistry Communications
2008;11:626e9;
(f) Yoon S, Miller EW, He Q, Do PH, Chang CJ. A bright and specific fluorescent
sensor for mercury in water, cells, and tissue. Angewandte Chemie Interna-
tional Edition 2007;46:6658e61.
(c) Kaur P, Sareen D, Kaur S, Singh K. An efficacious ‘‘naked-eye” selective
sensing of cyanide from aqueous solutions using a triarylmethane leuconitrile.
Inorganic Chemistry Communications 2009;12:272e5;
(d) Kaur P, Kaur S, Singh K. Colorimetric detection of cyanide in water using
a highly selective Cu2þ chemosensor. Inorganic Chemistry Communications
2009;12:978e81.
[20] Sensors for Fe3þ: (a) Xiang Y, Tong A. A new rhodamine-based chemosensor
exhibiting selective Fe(III)-amplified fluorescence. Organic Letters 2006;
8:1549e52;
(b) Jung HJ, Singh N, Jang DO. Highly Fe3þ selective ratiometric fluorescent
probe based on imine-linked benzimidazole. Tetrahedron Letters 2008;
49:2960e4;
[13] Yan Y, Hu Y, Zhao G, Kou X. A novel azathia-crown ether dye chromogenic
chemosensor for the selective detection of mercury(II) ion. Dyes and Pigments
2008;79:210e5.
[14] Komatsu H, Citterio D, Fujiwara Y, Minamihashi K, Araki Y, Hagiwara M, et al.
Single molecular multianalyte sensor: jewel pendant ligand. Organic Letters
2005;7:2857e9.
[15] dos Santos CMG, Harte AJ, Quinn SJ, Gunnlaugsson T. Recent developments in
the field of supramolecular lanthanide luminescent sensors and self-assem-
blies. Coordination Chemistry Reviews 2008;252:2512e27.
[16] Sanli O, Asman G. Removal of Fe(III) ions from dilute aqueous solutions by
alginic acid-enhanced ultrafiltration. Journal of Applied Polymer Science
2000;77:1096e101.
(c) Li N, Xu Q, Xia X, Wang L, Lu J, Wen X. A polymeric chemosensor for Fe3þ
based on fluorescence quenching of polymer with quinoline derivative in the
side chain. Materials Chemistry and Physics 2009;114:339e43;
(d) Yao J, Dou W, Qin W, Liu W. A new coumarin-based chemosensor for Fe3þ
in water. Inorganic Chemistry Communications 2009;12:116e8;
(e) Xu M, Wu S, Zeng F, Yu C. Cyclodextrin supramolecular complex as
a water-soluble ratiometric sensor for ferric ion sensing. Langmuir 2010;
26:4529e34.
[21] Zollinger H. Color chemistry, syntheses, properties and application of organic
dyes and pigments. 3rd revised ed. pp. 166.
[17] (a) Stern AH, Hudson RJM, Shade CW, Ekino S, Ninomiya T, Susa M, et al. More
on mercury content in fish. Science 2004;303:763e6;
[22] Ho T-L. The hard soft acids bases (HSAB) principle and organic chemistry.
Chemical Reviews 1975;75:1e20.
(b) Clarkson TW, Magos L, Myers GJ. The toxicology of mercurydcurrent
exposures and clinical manifestations. New England Journal of Medicine
2003;349:1731e7.
[23] Li K, Xue D. Estimation of electronegativity values of elements in different
valence states. Journal of Physical Chemistry A 2006;110:11332e7.
[24] Gans P, Sabatini A, Vacca A. Investigation of equilibria in solution. Determi-
nation of equilibrium constants with the HYPERQUAD suite of programs.
Talanta 1996;43:1739e53.
[18] Colorimetric Hg2þ sensors: (a) Tan J, Yan X-P. 2,1,3-Benzoxadiazole-based
selective chromogenic chemosensor for rapid naked-eye detection of Hg2þ