coefficient have been developed for DSCs.10-19 In general,
the squaraine dye sensitized DSCs can efficiently convert
the low-energy (∼1.9 eV) photons into electricity, which
makes the squaraine dyes not only promising cosensitizers
for organic dyes with a complementary absorption profile20,21
but also good candidates to be combined with luminescent
energy-relay dyes.22 However, there are only rare squaraine-
sensitized DSCs exhibiting a panchromatic response.19 Here
we report two novel unsymmetrical squaraine dyes, coded
JYL-SQ5 and JYL-SQ6, which are optimized for panchro-
matic sensitization of DSCs. The electron-rich 3,4-ethylene-
dioxythiophene (EDOT) and bithiophene (BT) fragments
with their benefits for improving the light-harvesting capacity
of the ruthenium sensitizers23,24 were incorporated, respec-
tively, to link unconventionally the squaraine core and the
hexyloxyphenyl amino donor moiety.
Figure 1. Electronic absorption spectra of JYL-SQ5 and JYL-
SQ6 in ethanol and immobilized on TiO2 thin films (ca. 8.0 µm).
The molecular structures of JYL-SQ5 and JYL-SQ6 and
their synthetic scheme are depicted in Scheme 1. The
absorption coefficient (ε) of 10.9 × 104 M-1 cm-1; therefore,
it can efficiently adsorb the photons with a much lower
energy compared to the previously reported squaraines10-19
designed for DSC application. These features make JYL-
SQ5 promising for harvesting more far-red and near-infrared
photons. Surprisingly, the λmax of JYL-SQ6 is 41 nm blue-
shifted compared to that of JYL-SQ5, and its ε value (7.5
× 104 M-1 cm-1) is also significantly lower than that of JYL-
SQ5 although its absorption band is broader (the full width
at half-maximum (fwhm) is 132.4 nm for JYL-SQ6 vs 107.7
nm for JYL-SQ5).
Scheme 1. Preparation for JYL-SQ5 and JYL-SQ6
To understand how the electron density redistributed after
photoexcitations, the density functional theory (DFT) was
applied to study the molecular geometries, molecular orbitals,
and UV-vis spectra of JYL-SQ5 and JYL-SQ6. The
ground-state molecular geometry was optimized by the
Becke, three-parameter, Lee-Yang-Parr (B3LYP) func-
tional and 6-31G(d,p) basis set, as implemented in the
Gaussian 09 program.25 The Conductor-like Polarizable
Continuum Model (C-PCM)26 was used to account for the
solvation effect (ethanol). The time-dependent DFT (TD-
DFT) calculations were performed to calculate the UV-vis
spectra. To account for the charge transfer excitations, the
coulomb-attenuating method (CAM)27 was applied (at TD-
CAM-B3LYP/6-31G(d,p) level) to calculate the UV-vis
spectra of the two sensitizers based on their corresponding
optimized geometries calculated at the B3LYP/6-31G(d,p)
synthetic details and structure characterization are provided
in the Supporting Information (SI). The electronic absorption
spectra of JYL-SQ5 and JYL-SQ6 measured in ethanol are
shown in Figure 1. Encouragingly, JYL-SQ5 owns an
intense absorption band centered at 691 nm with a high molar
(10) Zhao, W.; Hou, Y.; Wang, X.; Zhang, B.; Cao, Y.; Yang, R.; Wang,
W.; Xiao, X. Sol. Energy Mater. Sol. Cells 1999, 58, 173
.
(11) Li, C.; Wang, W.; Wang, X.; Zhang, B.; Cao, Y. Chem. Lett. 2005,
35, 554
.
(12) Alex, S.; Santhosh, U.; Das, S. J. Photochem. Photobiol. A: Chem.
2005, 172, 63
.
(13) Otsuka, A.; Funabiki, K.; Sugiyama, N.; Yoshida, T. Chem. Lett.
2006, 666
.
(14) Tatay, S.; Haque, S. A.; O’Regan, B.; Durrant, J.; Verhees, W. J. H.;
Kroon, J. M.; Vidal-Ferran, A.; Gavina˜, P.; Palomares, E. J. Mater. Chem.
(21) Choi, H.; Kim, S.; Kang, S. O.; Ko, J.; Kang, M. S.; Clifford, J. N.;
Forneli, A.; Palomares, E.; Nazeeruddin, M. K.; Gra¨tzel, M. Angew. Chem.,
Int. Ed. 2008, 47, 8259.
2007, 17, 3037
.
(15) Burke, A.; Schmidt-Mende, L.; Ito, S.; Gra¨tzel, M. Chem. Commun.
(22) Yum, J. H.; Hardin, B. E.; Moon, S. J.; Baranoff, E.; Nue¨sch, F.;
McGehee, M. D.; Gra¨tzel, M.; Nazeeruddin, M. K. Angew. Chem., Int. Ed.
2009, 48, 9277.
2007, 234
.
(16) Yum, J. H.; Walter, P.; Huber, S.; Rentsch, D.; Geiger, T.; Nue¨sch,
F.; Angelis, F. D.; Gra¨tzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc.
(23) Chen, C. Y.; Wu, S. J.; Wu, C. G.; Chen, J. G.; Ho, K. C. AdV.
Mater. 2007, 19, 3888.
2007, 129, 10320
.
(17) Geiger, T.; Kuster, S.; Yum, J. H.; Moon, S. J.; Nazeeruddin, M. K.;
(24) Chen, C. Y.; Wu, S. J.; Wu, C. G.; Chen, J. G.; Ho, K. C. Angew.
Chem., Int. Ed. 2006, 45, 5822.
Gra¨tzel, M.; Nue¨sch, F. AdV. Funct. Mater. 2009, 19, 2720
(18) Beverina, L.; Ruffo, R.; Mari, C. M.; Pagani, G. A.; Sassi, M.; De
Angelis, F.; Fantacci, S.; Yum, J. H.; Gra¨tzel, M.; Nazeeruddin, M. K.
ChemSusChem 2009, 2, 621
(19) Choi, H.; Kim, J. J.; Song, K.; Ko, J.; Nazeeruddin, M. K.; Gra¨tzel,
M. J. Mater. Chem. 2010, 20, 3280
(20) Chen, Y.; Zeng, Z.; Li, C.; Wang, W.; Wang, X.; Zhang, B. New.
J. Chem. 2005, 29, 773
.
(25) Frisch, M. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wall-
ingford CT, 2009 (complete reference is provided in the Supporting
Information).
.
(26) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.
2003, 24, 669.
.
(27) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393,
51.
.
Org. Lett., Vol. 12, No. 23, 2010
5455