Cu(I)-catalyzed 1,3-dipolar [3 + 2] cycloadditions4 be-
tween azides and alkynes (CuAAC), known generally as
“click reactions”, have been used extensively for conjugation
of various ligands to DNA,5 for DNA ligation,6 and for
fluorophore tagging of oligonucleotides7 and modified nu-
cleosides.8 High chemical stability and selective reactivity
of alkyne and azide precursors and excellent 1,4-regioselec-
tivity4 make CuAAC a promising approach for oligonucleo-
tide-ligand conjugate synthesis.
To achieve CuAAC-mediated RNA conjugation to dif-
ferent ligands, we initially explored a hydroxyprolinol-
derived alkyne derivative. The key alkyne intermediate 3 for
the synthesis of the long-chain aminoalkyl controlled pore
glass (lcaa CPG) support 4 (Scheme 1) and the corresponding
The alkyne-functionalized hydroxyprolinol moiety was
incorporated at the 3′ end of the oligonucleotide using
standard solid-phase synthesis to afford the support-bound
alkyne-RNA 5 (Supporting Information). We evaluated click
reactions of the solid support-bound oligonucleotide 5 with
linoleyl azide10 (6, Scheme 1) under conditions reported for
the synthesis of various solid-supported carbohydrate-DNA
conjugates.11 The goal of linoleyl conjugation was to improve
the tissue distribution and cellular permeation of siRNAs,
similar to what we achieved with cholesterol conjugation
earlier.12 The reaction went to completion upon microwave
irradiation (60 °C, 45 min) of the reaction mixture of alkyne/
azide/CuSO4/tris(benzyltriazolyl-methyl) amine13 (TBTA)/
sodium ascorbate with 1:5.8:0.8:5.6:6.4 molar ratio in
methanol/water/THF (2:2:1 by volume).
The main drawback of the CuAAC reaction is contamina-
tion of the product with copper ions; this is especially a
problem when the reaction is performed in the solution phase
using an unprotected alkyne or azido functionalized oligo-
nucleotide (unpublished results). Contamination with Cu+/
Cu2+ could be problematic due to the potential for increased
nucleic acid hydrolysis14 and potential cytotoxicity due to
heavy metal ion contamination. The development of the
strain-promoted azide-alkyne cycloaddition (SPAAC) reac-
tion, also known as Cu-free click chemistry, has provided a
solution to this issue.15 In addition to this approach, strained
alkene-nitrile oxide16 and alkyne-nitrile oxide17 click
cycloaddition reactions have also been reported for the
modification of DNA in the absence of metal catalysts.
Two research groups have reported the synthesis of
activated cycloalkynes for click chemistry that do not require
Cu(I) catalysis. Bertozzi’s laboratory reported strained cy-
clooctynes 8,15a 9,15b,c 10,15d and 11,15e and Boon’s labora-
tory reported the cyclooctyne 1215g (Figure 1). These
compounds can undergo azide-alkyne cycloaddition in the
absence of copper and enabled the SPAAC15a process. For
Scheme 1.
CuAAC Reaction with Solid-Supported RNAa
a The lowercase letters indicate 2′-O-methyl-ribonucleotides.
(10) Constantinou-Kokotou, V.; Kokotos, G.; Roussakis, C. Anticancer
Res. 1998, 18, 3439.
phosporamidite (Scheme S1, Supporting Information) for
incorporation of the alkyne moiety to internal and/or 5′-end
of the oligonucloetide were obtained from trans-4-hydroxy-
prolinol derivative 29 and 5-hexynoic acid (1). The secondary
hydroxyl group of 3 was reacted with succinic anhydride in
the presence of DMAP to afford the hemisuccinate, which
was then loaded onto lcaa CPG support under peptide
coupling conditions to obtain the desired CPG-alkyne support
4 with loading of 90 µmol/g.
(11) Pourceau, G.; Meyer, A.; Vasseur, J.-J.; Morvan, F. J. Org. Chem.
2009, 74, 1218.
(12) Wolfrum, C.; Shi, S.; Jayaprakash, K. N.; Jayaraman, M.; Wang,
G.; Pandey, R. K.; Rajeev, K. G.; Nakayama, T.; Charrise, K.; Ndungo,
E. M.; Zimmermann, T.; Koteliansky, V.; Manoharan, M.; Stoffel, M. Nat.
Biotechnol. 2007, 25, 1149.
(13) Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett.
2004, 6, 2853.
(14) (a) Hegg, E. L.; Deal, K. A.; Kiessling, L. L.; Burstyn, J. N. Inorg.
Chem. 1997, 36, 1715. (b) Sissi, C.; Mancin, F.; Palumbo, M.; Scrimin, P.;
Tecilla, P.; Tonellato, U. Nucleosides Nucleotides Nucleic Acids 2000, 19,
1265. (c) Maheswari, P. U.; Roy, S.; Den Dulk, H.; Barends, S.; Van Wezel,
G.; Kozlevcar, B.; Gamez, P.; Reedijk, J. J. Am. Chem. Soc. 2006, 128,
710.
(4) (a) Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 565. (b) Tornoe,
E. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Kolb,
C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004.
(5) (a) Gogoi, K.; Mane, M. V.; Kunte, S. S.; Kumar, V. A. Nucleic
Acids Res. 2007, 35, e139. (b) Pourceau, G.; Meyer, A.; Chevolot, Y.;
Souteyrand, E.; Vasseur, J.-J.; Morvan, F. Bioconjugate Chem. 2010, 21,
1520. (c) Lonnberg, H. Bioconjugate Chem. 2009, 20, 1065.
(6) (a) El-Sagheer, A. H.; Brown, T. Chem. Soc. ReV. 2010, 39, 1388.
(b) Meyer, A.; Spinelli, N.; Dumy, P.; Vasseur, J.-J.; Morvan, F.; Defrancq,
E. J. Org. Chem. 2010, 75, 3927.
(15) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc.
2004, 126, 15046. (b) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard,
N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R.
Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16793. (c) Codelli, J. A.; Baskin,
J. M.; Agard, N. J.; Bertozzi, C. R. J. Am. Chem. Soc. 2008, 130, 11486.
(d) Jewett, J. C.; Sletten, E. M.; Bertozzi, C. R. J. Am. Chem. Soc. 2010,
132, 3688. (e) Sletten, E. M.; Nakamura, H.; Jewett, J. C.; Bertozzi, C. R.
J. Am. Chem. Soc. 2010, 132, 11799. (f) Bertozzi, C. R.; Agard, N. J.;
Prescher, J. A.; Baskin, J. M. PCT Int. Appl. 2006; p 68, WO 2006050262.
(g) Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G.-J. Angew. Chem., Int. Ed.
2008, 47, 2253.
(7) Seela, F.; Ingale, S. A. J. Org. Chem. 2010, 75, 284.
(8) Lucas, R.; Zerrouki, R.; Granet, R.; Krausz, P.; Champavier, Y.
Tetrahedron 2008, 64, 5467.
(16) Gutsmiedl, K.; Wirges, C. T.; Ehmke, V.; Carell, T. Org. Lett. 2009,
11, 2405.
(9) Manoharan, M.; Kesavan, V.; Rajeev, K. G. U.S. Pat. Appl. Publ.,
2006; p 132, US 2006008822.
(17) Singh, I.; Vyle, J. S.; Heaney, F. Chem. Commun. 2009, 3276.
Org. Lett., Vol. 12, No. 23, 2010
5411