J. Taechalertpaisarn et al. / Tetrahedron Letters 51 (2010) 5822–5826
5825
4.00
2.00
0.00
-2.00
-4.00
-6.00
-8.00
-10.00
-12.00
(2'R,4'R)-PNA
(2'R,4'R)-PNA+DNA
(2'R,4'S)-PNA
(2'R,4'S)-PNA+DNA
200
220
240
260
280
300
320
Wavelength (nm)
Figure 2. CD spectra of self-complementary (20R,40R)- and (20R,40S)-acpcPNA P3 in the absence and presence of complementary DNA. The spectra were measured at a fixed
concentration of PNA strand = 1 M and DNA strand = 1 M in 10 mM sodium phosphate buffer (pH 7.0) containing 100 mM of NaCl at 20 °C.
l
l
by double duplex invasion,21 the self-pairing may also be useful for
applications including the construction of PNA-based nano-
materials.22
6. Review: Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101,
3219–3232.
7. (a) Vilaivan, T.; Suparpprom, C.; Harnyuttanakorn, P.; Lowe, G. Tetrahedron Lett.
2001, 42, 5533–5536; (b) Vilaivan, T.; Lowe, G. J. Am. Chem. Soc. 2002, 124,
9326–9327; (c) Suparpprom, C.; Srisuwannaket, C.; Sangvanich, P.; Vilaivan, T.
Tetrahedron Lett. 2005, 46, 2833–2837; (d) Vilaivan, T.; Srisuwannaket, C. Org.
Lett. 2006, 8, 1897–1900; (e) Vilaivan, T.; Suparpprom, C.; Duanglaor, P.;
Harnyuttanakorn, P.; Lowe, G. Tetrahedron Lett. 2003, 44, 1663–1666.
8. Séquin, U. Experientia 1973, 29, 1059–1062.
9. Morvan, F.; Rayner, B.; Imbach, J. L.; Lee, M.; Hartley, J. A.; Chang, D. K.; Lown, J.
W. Nucleic Acids Res. 1987, 15, 7027–7044.
10. (a) Nielsen, P.; Christensen, N. K.; Dalskov, J. K. Chem. Eur. J. 2002, 8, 712–722;
(b) Laurent, A.; Naval, M.; Debart, F.; Vasseur, J.-J.; Rayner, B. Nucleic Acids Res.
1999, 27, 4151–4159.
Acknowledgements
Financial support from the Thailand Research Fund(RTA5280002
to T.V.), the Development and Promotion of Science and Technology
Talents Project (DPST) (to J.T. and C.B.) and the National Center of
Excellence for Petroleum, Petrochemicals and Advanced Materials
(NCE-PPAM) is acknowledged.
11. Thuong, N. T.; Asseline, U.; Roig, V.; Takasugi, M.; Hélène, C. Proc. Natl. Acad. Sci.
U.S.A. 1987, 84, 5129–5133.
12. Lowe, G.; Vilaivan, T. J. Chem. Soc., Perkin Trans. 1 1997, 547–554.
13. Spectroscopic data of PNA monomers:
Supplementary data
Compound 3a (T monomer): ½a D25
ꢂ
ꢃ2.90 (c 1.0, DMF); 1H NMR (400 MHz,
Supplementary data (experimental details, copies of 1H and 13
C
DMSO-d6) (ratio minor/major isomer ꢀ1:1.38) dH 1.80 (s, 3H, CH3 thymine),
2.20–2.32 and 2.58–2.75 [br m, 2H, CH2(30) rotamers], 3.44–3.49 and 3.73–3.82
[m, 2H, CH2(50) rotamers], 4.18–4.33 (m, 3H, CH Fmoc and CH2 Fmoc), 4.40–
4.43 and 4.53–4.57 [m, 1H, CH(20) rotamers], 5.03–5.11 [m, 1H, CH(40)], 7.31–
7.35 [m, 3H, CH(6) thymine and CH Ar Fmoc], 7.40–7.45 (m, 2H, CH Ar Fmoc),
7.59 and 7.62 (2 ꢄ s, 1H, NH thymine), 7.64–7.66 (m, 2H, CH Ar Fmoc), 7.89–
7.91 (m, 2H, CH Ar Fmoc), 11.32 and 11.35 (2 ꢄ s, 1H, COOH); 13C NMR
(100 MHz, DMSO-d6) dC 12.6 (CH3 thymine), 32.7 and 33.8 [CH2(30) rotamers],
47.0 and 47.1 (CH Fmoc), 49.3 and 49.5 [CH(50) rotamers], 52.3 and 53.3
[CH(40) rotamers], 57.9 and 58.1 [CH(20) rotamers], 67.4 and 67.7 (CH2 Fmoc
rotamers), 110.0 [C(5) thymine], 120.6 (CH Ar Fmoc), 125.6 (CH Ar Fmoc),
127.6 (CH Ar Fmoc), 128.2 (CH Ar Fmoc), 138.1 [C(6)H thymine], 141.1 (C Ar
Fmoc), 144.1 (C Ar Fmoc), 151.4 [C(2) thymine], 154.0 and 154.3 (CO Fmoc
rotamers), 164.2 [C(4) thymine], 173.5 and 173.8 (COOH rotamers); HRMS
(ESI) calcd for C25H23N3O6ꢁH+ 462.1665, found 462.1654.
NMR spectra of compounds 1b, 2a–f and 3a–d, mass spectra of
(20R,40R)-acpcPNA P1–P3 and Tm curves of P2 hybrids) associated
with this article can be found, in the online version, at
References and notes
1. (a) Nielsen, P. E.; Haaima, G. Chem. Soc. Rev. 1997, 26, 73–78; (b) Uhlmann, E.;
Peyman, A.; Breipohl, G.; Will, D. W. Angew. Chem., Int. Ed. 1998, 37, 2797–2823.
2. (a) Demidov, V. V. Drug Discovery Today 2002, 7, 153–154; (b) Nielsen, P. E.
Curr. Opin. Biotechnol. 2001, 12, 16–20; (c) Ray, A.; Nordén, B. FASEB J. 2000, 14,
1041–1060.
3. (a) Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science 1991, 254, 1497–
1500; (b) Egholm, M.; Buchardt, O.; Nielsen, P. E.; Berg, R. H. J. Am. Chem. Soc.
1992, 114, 1895–1897.
Compound 3b (CBz monomer): ½a 2D4
ꢂ
ꢃ15.1 (c 1.0, DMF); 1H NMR (400 MHz,
DMSO-d6) (ratio minor/major isomer ꢀ1:1.37) dH 2.34–2.47 and 2.71–2.86 [br
m, 2H, CH2(30) rotamers], 3.59–3.63 and 3.85–3.94 [m, 2H, CH2(50) rotamers],
4.19–4.38 (m, 3H, CH2 and CH Fmoc rotamers), 4.49 (dd J = 8.8, 3.3 Hz) and
4.63 (m) [1H, CH(20) rotamers], 5.14 [m, 1H, CH(40)], 7.30–7.38 [m, 3H, CH Ar
Fmoc and CH(5) cytosine], 7.33–7.45 (m, 2H, CH Ar Fmoc), 7.51–7.55 (m, 2H,
CH Ar Fmoc), 7.62–7.69 (m, 3H, CH Bz), 7.88–7.91 (m, 2H, CH Ar Fmoc), 8.00–
8.05 (m, 2H, CH Bz), 8.14 (d J = 7.5 Hz) and 8.19 (d J = 7.5 Hz) [1H, CH(6)
cytosine rotamers], 11.28 (br s, 1H, COOH); 13C NMR (100 MHz, DMSO-d6) dC
32.9 and 34.1 [CH2(30) rotamers], 47.0 and 47.1 (CH Fmoc rotamers), 50.1 and
50.5 [CH2(50) rotamers], 55.4 and 56.4 [CH(40) rotamers], 57.9 and 58.1 [CH(20)
rotamers], 67.3 and 67.7 (CH2 Fmoc rotamers), 96.9 [C(5)H cytosine], 120.6 (CH
Ar Fmoc), 125.6 (CH Ar Fmoc), 127.6 (CH Ar Fmoc), 128.2 (CH Ar Fmoc), 128.9
4. (a) Kumar, V. A. Eur. J. Org. Chem. 2002, 2021–2032; (b) Kumar, V. A.; Ganesh, K.
N. Acc. Chem. Res. 2005, 38, 404–412.
5. Selected examples: (a) Govindaraju, T.; Kumar, V. A.; Ganesh, K. N. J. Am. Chem.
Soc. 2005, 127, 4144–4145; (b) Pokorski, J. K.; Witschi, M. A.; Purnell, B. L.;
Appella, D. H. J. Am. Chem. Soc. 2004, 126, 15067–15073; (c) Dragulescu-
Andrasi, A.; Rapireddy, S.; Frezza, B. M.; Gayathri, C.; Gil, R. R.; Ly, D. H. J. Am.
Chem. Soc. 2006, 128, 10258–10267; (d) Gogoi, K.; Kumar, V. A. Chem. Commun.
2008, 706–708; (e) Worthington, R. J.; Bell, N. M.; Wong, R.; Micklefield, J. Org.
Biomol. Chem. 2008, 6, 92–103.