Published on Web 11/05/2010
Fo¨rster Resonant Energy Transfer in Orthogonally Arranged
Chromophores
Heinz Langhals,*,† Andreas J. Esterbauer,† Andreas Walter,† Eberhard Riedle,*,‡
and Igor Pugliesi‡
Department of Chemistry, LMU UniVersity of Munich, Butenandtstrasse 13, 81377 Munich, and
Lehrstuhl fu¨r BioMolekulare Optik, LMU UniVersity of Munich, Oettingenstrasse 67,
80538 Munich, Germany
Received February 23, 2010; E-mail: Langhals@lrz.uni-muenchen.de;
Abstract: We investigate the ultrafast resonant energy transfer of a perylene bisimide dyad by pump-probe
spectroscopy, chemical variation, and calculations. This dyad undergoes transfer with near-unit quantum
efficiency, although the transition dipole moments of the donor and acceptor are in a perfectly orthogonal
arrangement to each other in the equilibrium geometry. According to the point dipole approximation used
in Fo¨rster theory, no energy transfer should occur. Experimentally we do, however, find an ultrafast transfer
time of 9.4 ps. With the transition density cube approach we show that in the orthogonal arrangement the
Coulombic interactions do not contribute to the electronic coupling. Through the change of the spacer in
both length and chemical character, we can clearly exclude any Dexter-type energy transfer. The temperature
effects on the Fo¨rster resonant energy transfer rate demonstrate that energy transfer is enabled through
low-frequency ground-state vibrations, which break the orthogonal arrangement of the transition dipole
moments. The dyads presented here therefore are a first example that shows with extreme clarity the
decisive role vibrational motion plays in energy transfer processes.
1000(ln 10)κ2JDAΦD
Introduction
kFRET
)
(1)
Fo¨rster resonant energy transfer (FRET)1 is becoming of
increasing importance in chemistry and biochemistry.2,3 FRET
is being generally accepted and applied as an indicator for
molecular proximity of light-absorbing and fluorescent struc-
tures. These applications rely on the basic theory1b of FRET,
which describes the energy transfer rate constant kFRET according
to the following equation:
6
128π5NAτD|RDA
|
where JDA is the overlap integral between the fluorescence
spectrum of the energy donor and the absorption spectrum of
the energy acceptor, ΦD is the fluorescence quantum yield of
the donor, NA is Avogadro’s number, τD is the fluorescence
lifetime of the energy donor, and RDA is the distance vector of
the middle points of the transition dipole moments of the energy
donor, µD, and acceptor, µA.3c
† Department of Chemistry.
ˆ
ˆ
κ ) (µˆD · µˆA) - 3(µˆD · RDA)·(RDA · µˆA)
(2)
‡ Lehrstuhl fu¨r BioMolekulare Optik.
(1) (a) Fo¨rster, T. Naturwissenschaften 1946, 33, 166-175; Chem. Abstr.
1947, 41, 36668. (b) Fo¨rster, T. Ann. Phys. 1948, 6, 55-75; Chem.
Abstr. 1949, 43, 31172. (c) Fo¨rster, T. Z. Elektrochem. 1949, 53, 93-
99; Chem. Abstr. 1949, 43, 33629. (d) Fo¨rster, T. Z. Naturforsch. 1949,
4a, 321-327; Chem. Abstr. 1950, 44, 43074.
(2) (a) Hell, S. W.; Kastrup, L. Nachr. Chem. Tech. 2007, 55, 47-50;
Chem. Abstr. 2007, 146, 38018. (b) Braun, H.-P.; Schmitz, U. K. Annu.
Plant ReV. 2006, 28, 55-70; Chem. Abstr. 2006, 146, 311667. (c)
Lewis, F. D. Pure Appl. Chem. 2006, 78, 2287–2295. (d) Medintz,
I. L. Trends Biotechnol. 2006, 24, 539-542; Chem. Abstr. 2006, 146,
117068. (e) Periasamy, A.; Day, R. N. J. Biomed. Opt. 2006, 11,
069901/1-069901/2; Chem. Abstr. 2007, 147, 90184. (f) Sapsford,
K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45, 4562–
4588. (g) Nagl, S.; Schaeferling, M.; Wolfbeis, O. S. Microchim. Acta
2005, 151, 1-21; Chem. Abstr. 2005, 144, 66072.
(3) (a) Styer, L.; Haugland, R. P. Proc. Natl. Acad. Sci. U.S.A. 1967, 58,
719–726. (b) Braslavsky, S. E.; Fron, E.; Rodriguez, H. B.; Roma´n,
E. S.; Scholes, G. D.; Schweitzer, G.; Valeur, B.; Wirz, J. Photochem.
Photobiol. Sci. 2008, 7, 1444–1448. (c) Van Beek, D. B.; Zwier, M. C.;
Shorb, J. M.; Krueger, B. P. Biophys. J. 2007, 92, 4168–4178. (d)
Mun˜oz-Losa, A.; Curutchet, C.; Krueger, B. P.; Hartsell, L. R.;
Mennucci, B. Biophys. J. 2009, 96, 4779–4788.
The factor κ describes the influence of the orientation of
electronic transition moments of the chromophores (see eq 2)
involved in the energy transfer. According to eq 2, κ ) 0 for
orthogonally arranged transition dipole moments with one
moment perpendicular to the interconnecting vector RDA.
3c As
a consequence, kFRET becomes zero and FRET is expected to
be extinguished for such an arrangement.
Investigation of Model Compounds
Dyad with Orthogonal Chromophores. We prepared4 the
perylene bisimide dyad 1 for the test of this postulate where
the benzoperylene subunit is hypsochromically absorbing and
the perylene subunit both bathochromically absorbing and
strongly fluorescent (Chart 1). The calculated distance between
(4) Langhals, H.; Poxleitner, S.; Krotz, O.; Pust, T.; Walter, A. Eur. J.
Org. Chem. 2008, 4559–4562.
9
10.1021/ja101544x 2010 American Chemical Society
J. AM. CHEM. SOC. 2010, 132, 16777–16782 16777