2318
Y. Miclo et al.
LETTER
(5) Garcia, P.; Moulin, S.; Miclo, Y.; Leboeuf, D.; Gandon, V.;
Aubert, C.; Malacria, M. Chem. Eur. J. 2009, 15, 2129.
(6) Examples of intramolecular [2+2+2] cycloaddition of two
alkynes to one nitrile are rare, see ref. 2, 3, 5, and:
(a) Garcia, L.; Pla-Quintana, A.; Roglans, A.; Parella, T.
Eur. J. Org. Chem. 2010, 3407. (b) Meißner, A.; Groth, U.
Synlett 2010, 1051. (c) Chang, H.-T.; Jeganmohan, M.;
Cheng, C.-H. Org. Lett. 2007, 9, 505. (d) Yamomoto, Y.;
Kinpara, K.; Ogawa, R.; Nishiyama, H.; Itoh, K. Chem. Eur.
J. 2006, 12, 5618. (e) Groth, U.; Huhn, T.; Kesenheimer, C.;
Kalogerakis, A. Synlett 2005, 1758. (f) Nicolaus, N.;
Strauss, S.; Neudörfl, J.-M.; Prokop, A.; Schmalz, H.-G.
Org. Lett. 2009, 11, 341.
(7) (a) Green, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 3rd ed.; John Wiley and Sons: New
York, 1999. (b) Kocieński, P. J. Protecting Groups, 3rd ed.;
Thieme: Stuttgart, 2005.
(8) The 2-pyridylsulfonyl group can be easily cleaved using for
instance magnesium in methanol, see: (a) Pak, C. S.; Lim,
D. S. Synth. Commun. 2001, 31, 2209. (b) On the other
hand, the 2-nitrobenzenesulfonyl group can be removed
using for instance thiophenol in the presence of potassium
carbonate, see: Fukuyama, T.; Jow, C.-K.; Cheung, M.
Tetrahedron Lett. 1995, 36, 6373.
irradiated (visible light) using a 300 W halogen lamp until
completion of the reaction (TLC monitoring). After removal
of the volatiles under reduced pressure, the crude mixture
was purified by flash chromatography (gradient mixtures of
PE and EtOAc), affording the corresponding tricyclic
pyridines.
Compound 2f: 1H NMR (400 MHz, C6D6, 70 °C): d = 2.84
(t, J = 6.0 Hz, 2 H), 3.46 (br s, 2 H), 4.18 (s, 2 H), 4.24 (br
s,2 H), 4.44 (br s, 2 H), 5.30 (s, 2 H), 7.20–7.31 (m, 3 H),
7.45 (d, J = 7.6 Hz, 2 H), 8.14 (s, 1 H). 13C NMR (100 MHz,
C6D6): d = 31.0–32.2 (CH2), 41.2–42.1 (CH2), 42.8–43.4
(CH2), 49.5–49.9 (CH2), 50.4–50.7 (CH2), 67.3 (CH2),
117.03 (q, J = 286 Hz, CF3), 121.7–121.9 (C), 128.4 (CH),
128.5 (CH), 128.8 (CH), 131.3-131.7 (C), 137.4 (C), 142.3–
142.9 (m, CH), 143.1–143.4 (C), 151.5–151.6 (C), 155.5 (q,
J = 36 Hz, C). 19F NMR (376 MHz, CDCl3): d = –69.7. IR
(neat): 3089, 3064, 3033, 2949, 2864, 1689, 1138, 730 cm–1.
Mp 144.1 °C. HRMS: m/z calcd for C20H19O3N3F3:
406.1370; found: 406.13727.
Compound 2i: 1H NMR (400 MHz, CDCl3): d = 1.46 (s, 9
H), 2.78 (br s, 2 H), 3.17 (br s, 2 H), 3.59 (br s, 4 H), 4.69–
4.72 (2 s, 2 H), 4.78 (br s, 2 H), 5.20 (s, 2 H), 7.28–7.41 (m,
5 H), 8.22–8.28 (2 s, 1 H). 13C NMR (100 MHz, CDCl3):
d = 28.5 (CH3), 28.7 (CH2), 31.3–31.8 (m, CH2), 40.1–45.9
(m, 2 CH2), 50.7–51.2 (CH2), 51.3–51.8 (CH2), 67.3–67.4
(CH2), 80.1 (C), 128.0 (CH), 128.3 (CH), 128.6 (CH),
130.5–131.4 (m, 2 C), 136.6 (C), 140.8–140.9 (CH), 145.6–
145.9 (m, 2 C), 154.7–155.0 (C), 159.7 (C). IR (neat): 2974,
1692, 1414 cm–1. Mp 154.1 °C. HRMS: m/z calcd for
C24H30O4N3: 424.22308; found: 424.22297.
(9) Cruickshank, K. A.; Stockwell, D. L. Tetrahedron Lett.
1988, 29, 5221.
(10) Brillon, D.; Deslongchamps, P. Can. J. Chem. 1987, 65, 43.
(11) Summa, V.; Petrocchi, A.; Matassa, V. G.; Gardelli, C.;
Muraglia, E.; Rowley, M.; Paz Gonzalez, O.; Laufer, R.;
Monteagudo, E.; Pace, P. J. Med. Chem. 2006, 49, 6646.
(12) Masquelin, T.; Obrecht, D. Synthesis 1995, 276.
(13) (a) McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D.
J. Org. Chem. 1986, 51, 3388. (b) Guorong, C.; Wei, Z.;
Dawei, M. Tetrahedron 2006, 62, 5697.
Compound 2k: 1H NMR (400 MHz, CDCl3): d = 2.52–2.59
(m, 4 H), 2.68–2.73 (m, 2 H), 3.08–3.10 (m, 2 H), 3.55 (s, 2
H), 4.56 (s, 1 H), 4.61 (s, 1 H), 4.67 (s, 1 H), 4.69 (s, 1 H),
5.12 (s, 2 H), 7.15–7.30 (m, 11 H), 8.10–8.15 (2 s, 1 H). 13
C
(14) Hughes, D. L. In Organic Reactions, Vol. 42; John Wiley
NMR (100 MHz, CDCl3): d = 30.7–30.8 (CH2), 39.3 (CH2),
50.7–51.1–51.2–51.6 (mixture of slow interconverting rota-
mers) (2 CH2), 53.7 (CH2), 54.2 (CH2), 63.5 (CH2), 67.3
(CH2), 127.2 (CH), 128.0 (CH), 128.2 (CH), 128.4 (CH),
128.6 (CH), 129.1 (CH), 130.1–131.1 (C), 131.4–131.6 (C),
136.7 (C), 138.5 (C), 140.5–140.8 (CH), 144.5–144.8 (C),
154.8 (C), 161.1–161.2 (C).IR (neat): 2942, 1703, 1412 cm–1.
HRMS: m/z calcd for C23H28O2N3: 414.21760; found
414.21754.
and Sons: Hoboken, 1992.
(15) The use of standard Mitsunobu conditions, Ph3P/DEAD,
proved less efficient than Bu3P/ADDP: Tsunoda, T.;
Yamamiya, Y.; Ito, S. Tetrahedron Lett. 1993, 34, 1639.
(16) Bergeson, R. J.; McManis, J. S. J. Org. Chem. 1988, 53,
3108.
(17) Neustadt, B. R. Tetrahedron Lett. 1994, 35, 379.
(18) Nyasse, B.; Grehn, L.; Regnarsson, U. Chem. Commun.
1997, 1017.
(23) It is worthy of note that attempts to cyclize monoprotected
diyne nitriles such as 16, 23, or 31 failed.
(19) Efskind, J.; Römming, C.; Undheim, K. J. Chem. Soc.,
Perkin Trans. 1 2001, 2697.
(24) For theoretical calculations on the formation of cobalta-
cyclopentadienes and their reactivity, see: (a) Xu, R.;
Winget, P.; Clark, T. Eur. J. Inorg. Chem. 2008, 2874.
(b) Agenet, N.; Gandon, V.; Vollhardt, K. P. C.; Malacria,
M.; Aubert, M. C. J. Am. Chem. Soc. 2007, 129, 8860.
(c) Aubert, C.; Gandon, V.; Geny, A.; Heckrodt, T. J.;
Malacria, M.; Paredes, E.; Vollhardt, K. P. C. Chem. Eur. J.
2007, 13, 7466. (d) Gandon, V.; Agenet, N.; Vollhardt, K. P.
C.; Malacria, M.; Aubert, C. J. Am. Chem. Soc. 2006, 128,
8509. (e) Dahy, A. A.; Koga, N. Bull. Chem. Soc. Jpn. 2005,
78, 781. (f) Dahy, A. A.; Suresh, C. H.; Koga, N. Bull.
Chem. Soc. Jpn. 2005, 78, 792. (g) Veiros, L. F.; Dazinger,
G.; Kirchner, K.; Calhorda, M. J.; Schmid, R. Chem. Eur. J.
2004, 10, 5860.
(20) Marquis, R. W.; Ru, Y.; LoCastro, S. M.; Zeng, J.;
Yamashita, D. S.; Oh, H.-J.; Erhard, K. F.; Davis, L. D.;
Tomaszek, T. A.; Tew, D.; Salyers, K.; Proksch, J.; Ward,
K.; Smith, B.; Levy, M.; Cummings, M. D.; Haltiwanger,
R. C.; Trescher, G.; Wang, B.; Hemling, M. E.; Quinn, C. J.;
Cheng, H.-Y.; Lin, F.; Smith, W. W.; Janson, C. A.; Zhao,
B.; McQueney, M. S.; D’Alessio, K.; Lee, C.-P.; Marzulli,
A.; Dodds, R. A.; Blake, S.; James, I. E.; Gress, C. J.;
Bradley, B. R.; Lark, M. W.; Gowen, M.; Veber, D. F.
J. Med. Chem. 2001, 44, 1380.
(21) Excellent yields of Mitsunobu reactions in the presence of
the 2-nitrobenzenesulfonyl group have been reported, see
ref. 8b.
(22) (a) For technical details about the visible light irradiation,
see: Agenet, N.; Mirebeau, J.-H.; Petit, M.; Thouvenot, R.;
Gandon, V.; Malacria, M.; Aubert, C. Organometallics
2007, 26, 819. (b) Procedure for [2+2+2] Cycloadditions
To a refluxing solution of the starting material in xylenes (c
0.1 M) under argon was added 5 mol% of
(25) For a DFT study of the mechanism of pyridine formation via
[2+2+2] cycloaddition, see: Dazinger, G.; Torres-Rodrigues,
M.; Kirchner, K.; Calhorda, M. J.; Costa, P. J. J. Organomet.
Chem. 2006, 691, 4434.
(26) Also we cannot exclude catalyst deactivation by the Ns
group.
cyclopentadienyledicarbonyl cobalt, and the mixture was
Synlett 2010, No. 15, 2314–2318 © Thieme Stuttgart · New York