Published on Web 11/17/2010
Advancing the Mechanistic Understanding of an
Enantioselective Palladium-Catalyzed Alkene
Difunctionalization Reaction
Katrina H. Jensen,† Jonathan D. Webb,‡ and Matthew S. Sigman*,†
Departments of Chemistry, UniVersity of Utah, 315 South 1400 East, Salt Lake City,
Utah 84112, United States, and Queen’s UniVersity, 90 Bader Lane, Kingston,
Ontario K7L 3N6, Canada
Received July 12, 2010; E-mail: sigman@chem.utah.edu
Abstract: The mechanism of an enantioselective palladium-catalyzed alkene difunctionalization reaction
has been investigated. Kinetic analysis provides evidence of turnover-limiting attack of a proposed quinone
methide intermediate with MeOH and suggests that copper is involved in productive product formation, not
just catalyst turnover. Through examination of substrate electronic effects, a Jaffe´ relationship was observed
correlating rate to electronic perturbation at two positions of the substrate. Ligand effects were evaluated
to provide evidence of rapid ligand exchange between palladium and copper as well as a correlation between
ligand electronic nature and enantioselectivity.
Introduction
However, due to facile ꢀ-hydride elimination from the resulting
Pd(II)-alkyl intermediate, methods are required to prevent
Alkene difunctionalization, the formation of two new bonds
from an alkene starting material, is a powerful synthetic method
which rapidly increases molecular complexity.1-19 Such a
transformation has the potential to set two new chiral centers,
and thus methods to accomplish highly enantioselective and/or
diastereoselective transformations catalytically are highly desir-
able. Palladium has become a popular metal of choice for alkene
difunctionalization, likely due to its propensity to coordinate
and activate alkene substrates for nucleophilic attack.3,4,20,21
ꢀ-hydride elimination in order to allow for the second func-
tionalization process. There are several classic strategies em-
ployed to circumvent this issue, including using conjugated
alkenes to form stabilized intermediates (such as π-allyl4,22-28
or π-benzyl complexes14,29) or trapping the Pd(II) intermediate
by insertion of a second alkene.30-33 More recently, Pd(II)-alkyl
intermediates have been oxidized to achieve alkene difunc-
tionalization.10,11,34-41 While many of these approaches are
(21) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem.
ReV. 2007, 107, 5318.
† University of Utah.
‡ Queen’s University.
(22) Ba¨ckvall, J. E.; Bystroem, S. E.; Nordberg, R. E. J. Org. Chem. 1984,
49, 4619.
(1) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. ReV.
1994, 94, 2483.
(23) Ba¨ckvall, J. E.; Nystroem, J. E.; Nordberg, R. E. J. Am. Chem. Soc.
1985, 107, 3676.
(2) Cardona, F.; Goti, A. Nat. Chem. 2009, 1, 269.
(3) Jensen, K. H.; Sigman, M. S. Org. Biomol. Chem 2008, 6, 4083.
(4) Ba¨ckvall, J.-E. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.;
de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Hoboken, NJ, 2004;
p 479.
(24) Ba¨ckvall, J. E.; Vaagberg, J. O. J. Org. Chem. 1988, 53, 5695.
(25) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem.
Soc. 2005, 127, 7308.
(26) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129,
7496.
(5) Benkovics, T.; Du, J.; Guzei, I. A.; Yoon, T. P. J. Org. Chem. 2009,
74, 5545.
(27) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590.
(28) Zhao, B.; Du, H.; Cui, S.; Shi, Y. J. Am. Chem. Soc. 2010, 132, 3523.
(29) Werner, E. W.; Urkalan, K. B.; Sigman, M. S. Org. Lett. 2010, 12,
2848.
(6) Paderes, M. C.; Chemler, S. R. Org. Lett. 2009, 11, 1915.
(7) Ba¨ckvall, J. E.; Nordberg, R. E. J. Am. Chem. Soc. 1981, 103, 4959.
(8) Zabawa, T. P.; Kasi, D.; Chemler, S. R. J. Am. Chem. Soc. 2005,
127, 11250.
(30) Scarborough, C. C.; Stahl, S. S. Org. Lett. 2006, 8, 3251.
(31) Kawamura, Y.; Kawano, Y.; Matsuda, T.; Ishitobi, Y.; Hosokawa, T.
J. Org. Chem. 2009, 74, 3048.
(9) Zeng, W.; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.
(10) Kalyani, D.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 2150.
(11) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc. 2009, 131, 3846.
(12) Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am.
Chem. Soc. 2009, 131, 9488.
(32) Kawamura, Y.; Imai, T.; Hosokawa, T. Synlett 2006, 3110.
(33) Minami, K.; Kawamura, Y.; Koga, K.; Hosokawa, T. Org. Lett. 2005,
7, 5689.
(13) Rodriguez, A.; Moran, W. J. Eur. J. Org. Chem. 2009, 1313.
(14) Urkalan, K. B.; Sigman, M. S. Angew. Chem., Int. Ed. 2009, 48, 3146.
(15) Tsujihara, T.; Takenaka, K.; Onitsuka, K.; Hatanaka, M.; Sasai, H.
J. Am. Chem. Soc. 2009, 131, 3452.
(34) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
(35) Alexanian, E. J.; Lee, C.; Sorensen, E. J. J. Am. Chem. Soc. 2005,
127, 7690.
(36) Desai, L. V.; Sanford, M. S. Angew. Chem., Int. Ed. 2007, 46, 5737.
(37) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sanford, M. S. J. Am.
Chem. Soc. 2007, 129, 5836.
(16) Chevrin, C.; Le Bras, J.; Henin, F.; Muzart, J. Synthesis 2005, 2615.
(17) Thiery, E.; Chevrin, C.; Le Bras, J.; Harakat, D.; Muzart, J. J. Org.
Chem. 2007, 72, 1859.
(38) Streuff, J.; Ho¨velmann, C. H.; Nieger, M.; Mun˜iz, K. J. Am. Chem.
Soc. 2005, 127, 14586.
(18) Demko, Z. P.; Bartsch, M.; Sharpless, K. B. Org. Lett. 2000, 2, 2221.
(19) Fuller, P. H.; Kim, J.-W.; Chemler, S. R. J. Am. Chem. Soc. 2008,
130, 17638.
(39) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010,
132, 2856.
(20) Semmelhack, M. F.; Bodurow, C. J. Am. Chem. Soc. 1984, 106, 1496.
(40) Li, Y.; Song, D.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 2962.
9
10.1021/ja108106h 2010 American Chemical Society
J. AM. CHEM. SOC. 2010, 132, 17471–17482 17471