6624 Organometallics 2010, 29, 6624–6626
DOI: 10.1021/om100875h
Reactions of (Silyl)(silylene)tungsten and -molybdenum Complexes
with Sulfur Reagents
Takako Muraoka, Tomoko Nakamura, Atsushi Nakamura, and Keiji Ueno*
Department of Chemistry and Chemical Biology, Graduate School of Engineering,
Gunma University, Kiryu 376-8515, Japan
Received September 9, 2010
Summary: Reaction of (silyl)(silylene)tungsten complex Cp*-
caused the elimination of the silylene fragment to give
[Cp*(Me3P)2Os-S-S-Os(PMe3)2Cp*][B(C6F5)4]2 and un-
identified organosilicon compounds.5
(OC)2W(SiMe3)(dSiMes2) (1) with sulfur reagents, S8 and
ethylene sulfide 4, afforded cyclic carbene tungsten complex
Cp*(S)W{dC(SiMe3)C(dO)OSi(Mes)2S} (3) via CdO bond
fission of a carbonyl ligand and 1,2-migration of the SiMe3
group from W to the resulting carbene carbon. In contrast to
the tungsten complex, reaction of (silyl)(silylene)molybdenum
complex Cp*(OC)2Mo(SiMe3)(dSiMes2) (2) with 4 gave η2-
thiocarbonyl complex Cp*(S)Mo[{η2-SdC(SiMe3)}C(dO)-
OSi(Mes)2S] (5), which would be formed by addition of a
sulfur atom to the ModC bond of a molybdenum analogue of 3.
We have reported the synthesis, structure, and properties
of (silyl)(silylene) complexes LnM(SiR3)(dSiR2) (M = Mo,
W, Fe; R = alkyl, aryl).6 These complexes are categorized as
silylene complexes, but show unique reactivity attributable to
the cooperation of the silyl and silylene ligands in the com-
plexes, such as 1,3-R group shift from the silyl to the silylene
ligand and 1,2-silyl shift from the metal to the silylene ligand.
This prompted us to investigate the reactivity of (silyl)(sily-
lene) complexes with sulfur reagents. In this paper, we report
the reaction of (silyl)(silylene)tungsten and -molybdenum
complexes Cp*(OC)2M(SiMe3)(dSiMes2) (1, M = W; 2,
M = Mo; Mes = 2,4,6-(CH3)3C6H2) with sulfur reagents. This
reaction did not cause silylene elimination, as mentioned above
for the silylene Os complex,5 but gave a cyclic carbene complex
and its sulfur adduct in which the silylene fragment remains in
the metallacycle core. Bond fission of a carbonyl ligand also took
place during the reaction to form the carbene ligand.
The reaction of transition metal carbene complexes LnMd
CR2 with sulfur reagents has been investigated intensively,
which afforded a variety of sulfur-containing metal com-
plexes and organic compounds via the initial formation of
η1- or η2-thiocarbonyl-coordinated complexes by addition of
sulfur to the MdC bond.1-3 In contrast to the carbene com-
plexes, only two examples have been reported so far on the
reaction of heavier congeners of carbene complexes, namely,
silylene and germylene complexes LnMdER2 (E = Si, Ge) with
sulfur reagents.4,5 The reaction of germylene complexes P2Pdd
Ge{N(SiMe3)2}2 (P2 = 2PEt3, 2PPh3, Ph2P(CH2)2PPh2) with
COS afforded metallacycles containing Pd, Ge, and S atoms via
addition of S to the PddGe bond.4 As opposed to the germylene
complex, the reaction of silylene Os complex [Cp*(Me3P)2Osd
SiiPr2][B(C6F5)4] (Cp* = η5-C5Me5) with elemental sulfur
Treatment of 1 with S8 in THF at 25 °C for 5 h afforded
cyclic carbene tungsten complex Cp*(S)W{dC(SiMe3)C-
(dO)OSi(Mes)2S} (3) in 65% yield (eq 1). Complex 3 was
also obtained by the reaction of 1 with excess ethylene sulfide
4, although a longer reaction time was required for comple-
tion (C6D6, rt, 26 days). Crystal structure analysis of 3
(Figure 1) revealed the three-legged piano-stool geometry
at the metal, two of which constitute a metallacyclohexene
*To whom correspondence should be addressed. Tel & fax: þ81-277-
30-1260. E-mail: ueno@chem-bio.gunma-u.ac.jp.
˚
fragment. The WdC(32) bond distance (1.935(4) A) is at the
shorter limit for those of typical WdC double bonds in the
(1) (a) Fischer, H. J. Organomet. Chem. 1981, 219, C34. (b) Fischer, H.
J. Organomet. Chem. 1981, 222, 241. (c) Dotz, K. H.; Sturm, W.; Alt, H. G.
Organometallics 1987, 6, 1424. (d) Zheng, Z.; Chen, J.; Yu, Z.; Han, X. J.
Organomet. Chem. 2006, 691, 3679. (e) Wang, Q.; Zhang, W.-X.; Xi, Z.
Organometallics 2008, 27, 3627.
7
˚
metallacyclic compounds (1.94-2.14 A) and within the range
8
˚
of the usual WdC-SiMe3 double bonds (1.87-1.96 A). The
(2) (a) Buhro, W. E.; Patton, A. T.; Strouse, C. E.; Gladysz, J. A.;
McCormick, F. B.; Etter, M. C. J. Am. Chem. Soc. 1983, 105, 1056. (b)
Hill, A. F.; Roper, W. R.; Waters, J. M.; Wright, A. H. J. Am. Chem. Soc.
1983, 105, 5939. (c) Park, J. W.; Henling, L. M.; Schaefer, W. P.; Grubbs,
R. H. Organometallics 1990, 9, 1650. (d) Werner, H.; Schwab, P.; Bleuel, E.;
Mahr, N.; Windmuller, B.; Wolf, J. Chem.;Eur. J. 2000, 6, 4461. (e) Jepsen,
A. S.; Vogeley, N. J.; White, P. S.; Templeton, J. L. J. Organomet. Chem.
2001, 617-618, 520. (f ) Mullins, S. M.; Bergman, R. G.; Arnold, J. Dalton
Trans. 2006, 203.
(3) (a) Fischer, E. O.; Riedmuller, S. Chem. Ber. 1974, 107, 915. (b)
Khasnis, D. V.; Le Bozec, H.; Dixneuf, P. H.; Adams, R. D. Organometallics
1986, 5, 1772. (c) Aumann, R.; Schroder, J.; Heinen, H. Chem. Ber. 1990,
123, 1369. (d) Zheng, Z.; Chen., J.; Luo, N.; Yu, Z.; Han, X. Organometallics
2006, 25, 5301. (e) Whited, M. T.; Grubbs, R. H. Organometallics 2009, 28,
161. (f ) Sandoval-Chavez, C.; Lopez-Cortes, J. G.; Gutierrez-Hernandez,
A. I.; Ortega-Alfaro, M. C.; Toscano, A.; Alvarez-Toledano, C. J. Organo-
met. Chem. 2009, 694, 3692.
(6) (a) Ueno, K.; Nakano, K.; Ogino, H. Chem. Lett. 1996, 459. (b)
Ueno, K.; Sakai, M.; Ogino, H. Organometallics 1998, 17, 2138. (c) Ueno,
K.; Asami, S.; Watanabe, N.; Ogino, H. Organometallics 2002, 21, 1326. (d)
Tobita, H.; Matsuda, A.; Hashimoto, H.; Ueno, K.; Ogino, H. Angew. Chem.,
Int. Ed. 2004, 43, 221. (e) Hirotsu, M.; Nunokawa, T.; Ueno, K. Organo-
metallics 2006, 25, 1554.
(7) (a) Huy, N. H. T.; Fischer, E. O.; Riede, J.; Thewalt, U.; Dotz,
K. H. J. Organomet. Chem. 1984, 273, C29. (b) Johnson, L. K.; Frey, M.;
Ulibarri, T. A.; Virgil, S. C.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc.
1993, 115, 8167. (c) Schrock, R. R.; Seidel, S. W.; Mosch-Zanetti, N. C.;
Dobbs, D. A.; Shih, K.-Y.; Davis, W. M. Organometallics 1997, 16, 5195. (d)
Stumpf, R.; Burzlaff, N.; Weibert, B.; Fischer, H. J. Organomet. Chem.
2002, 651, 66. (e) Anderson, S.; Cook, D. J.; Hill, A. F.; Malget, J. M.; White,
A. J. P.; Williams, D. J. Organometallics 2004, 23, 2552.
(8) (a) Schaaf, P. A.; Grove, D. M.; Smeets, W. J. J.; Spek, A. L.;
Koten, G. Organometallics 1993, 12, 3955. (b) Schaaf, P. A.; Abbenhuis, R.
A. T. M.; Noort, W. P. A.; Graaf, R.; Grove, D. M.; Smeets, W. J. J.; Spek,
A. L.; Koten, G. Organometallics 1994, 13, 1433. (c) Giannini, L.; Solari, E.;
Dovesi, S.; Floriani, C.; Re, N.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem.
Soc. 1999, 121, 2784. (d) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.;
Guzei, I. A.; Yap, G. P. A.; Xue, Z.-L. Organometallics 2006, 25, 427.
(4) Cygan, Z. T.; Kampf, J. W.; Holl, M. M. B. Inorg. Chem. 2003, 42,
7219.
(5) Glaser, P. B.; Wanandi, P. W.; Tilley, T. D. Organometallics 2004,
23, 693.
r
pubs.acs.org/Organometallics
Published on Web 11/22/2010
2010 American Chemical Society